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1 Executive Summary 
 

The key objective of this deliverable was to setup a viable system architecture for use with the TraceBot 

system. 

This involved creating a virtual environment for the robot to operate in, as well as modelling the robot 

and any useful objects for it to interact with (e.g. pump and canister) to represent the physical 

counterparts. This allowed for a pre-testing of the software framework, and allow testing of varying 

hardware components (such as varying arm lengths) before deciding on the final hardware 

framework. 

The results presented demonstrate a functioning architecture, with single and dual arm control, and 

implementation (either fully or partially) of all aspects of the system architecture and the starting of 

implementation of the hardware framework. 
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2 Introduction 
 

The purpose of the TraceBot project is to develop an automated solution for sterility testing where all 

actions are fully traceable.  In order to achieve this, we need to create a system with multiple functional 

modules focused around manipulation of objects and in capturing and referencing this against a 

Digital Twin. The systems include a dual arm system interacting with a pump, an advanced vision-

based system for monitoring the process, dexterous manipulators for articulating & moving lab 

apparatus and an advanced reasoning system that requires development of learning capabilities. 

Milestone 1 was focused on software integration and ensuring that software elements combined well 

together.  Moving forward in preparation for Milestone 2, we will also be looking at integrating 

hardware. The system architecture describes the interface and connectivity between different 

components of the system.  

There will be a large amount of challenges to overcome with the TraceBot project, therefore having a 

strong system architecture will be key to allow extensive testing of the system. 

To achieve this, building up a virtual environment with ROS and Gazebo (as discussed in D6.1, see 

Figure 1) allows for early testing of the system, and allowed for us to begin building up the 

foundational software framework for the system. 

 

 

Figure 1 - Visualisation of the TraceBot system within the Digital Twin 

 

Having a virtual environment allows us to work towards a functioning software framework, with 

consideration and virtual testing of the hardware components that will be using it. By simulating 

virtually, the risk of failure and damage of the physical hardware framework is significantly reduced. 

The hardware specification and software specification of the system provides an overview of all 

elements within the system. Having all the elements mapped out within an interconnected system will 

help to identify potential risks and challenges around interfacing and provide the opportunity to 

develop proactive solutions to overcome these. 
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The system architecture will demonstrate both single and dual arm functionality within the simulated 

environment, with consideration to what hardware will be needed to achieve this functionality. 

Various tests have been carried out throughout the project to test the best hardware for the job, 

specifically around the arms and stand-in gripper. The stand-in gripper will be used in place of the 

CEA gripper until a functioning version is completed in a later milestone. 

Risk mitigation strategies are considered within this deliverable in order to ensure all design elements 

are considered.  We consider the use of tools such as Failure Modes & Effects Analysis and their 

appropriateness to this application. 
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3 System Architecture 
 

The system architecture (Figure 2) has been built up over the past 14 months, planning the hardware 

framework, building this up in simulation to allow for the building and testing of the system 

architecture. This will form the foundation of the project and will allow for the further integration of 

the respective TraceBot systems from Work Packages 2-5. 

It has to be mentioned that all the different components or nodes required to control the system are 

not necessarily described here. The integration policy is to provide a skill interface for any capability 

provided to the robot. The related skill can then either be implemented in a single action (purple 

bubbles in Figure 2), or rely on interaction with other nodes to complete its duty. The distributivity of 

the ROS framework enables to cope with both approaches seamlessly.  

 

 

Figure 2 - System Architecture Flow Diagram.  

 

3.1 Software framework 
 

The development of the software framework provides a structural approach to understanding all 

software elements and their interactions. The proposed structure is based on initial integration 

performed in simulation (see D6.1 [1]). By creating the software framework for control of the 

simulated system first, it allows for thorough testing of the system prior to using physical hardware, 

reducing the risk of damage and potential costs of having to repurchase incorrect or incompatible 

hardware. 
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The TraceBot architecture is developed within the ROS framework, which provides crucial tools for 

connecting components (through standard topic, service or action mechanisms), encapsulating 

element complexity, reusing components developed by the community, easing the code sharing and 

deployment among contributors. 

The definition of the overall architecture is quite complex in the sense that several key components 

are currently under development, and therefore not totally bounded. Nevertheless, the simplified use 

case analysis and implementation (mentioned in D6.1 [1] and D1.6 [2]) enabled to highlight the main 

components that have to be interconnected to perform the TraceBot operations. Most of them are 

placed in the Figure 2. They are briefly detailed now1.  

 

3.1.1 Skill Framework 
A key component of the architecture is the skill framework that is used to define and encapsulate most 

of the capabilities of the robotic system. At the integration level, it presents the advantage to define a 

clear interface which must be fulfilled by any of the behaviours the system should be equipped with. 

This framework, developed by Tecnalia in T3.1, provides different implementation modes for the 

concept of skills, and the diagram presents one of the modalities which is based on the concept of ROS 

actions, for which each skill is defined through an action interface, with input, output and periodic 

feedback. In this framework, a robotic task is defined through a YAML process description, which 

defines the set of skills that have to be progressively executed to conduct the required operations. The 

skill framework is hierarchical, in the sense that a skill can be defined as a composition of skills.  

The component in charge of loading the action plan and executing it is the Skill Execution Engine. 

Based on a YAML process description, it generates a hierarchical finite state machine with the 

required behaviour. The generated state machine represents the skill composition hierarchy, allowing 

the required levels of granularity for an effective responsibility distribution. The framework allows, 

therefore, each partner to implement the skills wrapped as a ROS action and to integrate them as a 

state of the state machine. Figure 3 illustrates the generated state machine for the simplified use case 

example. The Skill Execution Engine progressively triggers the execution of the skills, handling the 

input/output parameters according to the YAML plan, monitoring the good execution of the process. 

 

 

 

1 Most of these elements are developed in other Work Packages. When appropriate, we will refer to the related  
task or deliverable to get more detailed information.  
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Figure 3 - Hierarchical finite state machine generated by the Skill Execution Engine. Based on 
the sequences of behaviours described in the simplified use case process file, insert canister.  

 

3.1.2 Tracer & NEEMS 
The Tracer collects information about the operations taking place, to form the basis of the audit trail. 

Any skill component being executed transmits all its input and output data, as well as the place of that 

skill within the process execution tree, to a tracer component through a single canal. The tracer 

component merges the information from every skill in the process into a single structure. This 

component, and the overall Traceability Framework, is developed within WP4, and more details about 

its implementation can be found in Deliverable 4.1 [3]. 

The tracer is also tracing the semantic of the operations executed, through its connection with the 

Narrative Enabled Episodic Memories (NEEMS). NEEMS are rich representations of the experiences 

made by the robot during a task’s execution and backed by knowledge bases. They also allow 

introspection of the robot belief state during task executions within a given action, while also 

providing semantic information about the environment and the relevant entities that have been 

manipulated by the robot.  
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This enriches the tracer with logged methods which represent the knowledge acquired by the robot 

during the execution of a testing procedure, as well as related background knowledge. 

The communication between the Tracer and the NEEMs is handled by our knowledge processing 

framework, which offers a query interface to generate, enrich or request NEEMs. Therefore, whenever 

a new sterility testing procedure is started in the system or new information like feedbacks, goals, or 

results from the skill engine are acquired, the Tracer can assert this information into the NEEM 

generation which is grounding the information into the ontology and establishes the semantic 

relations internally. After the episode is finished it is possible to extract the knowledge with queries. 

This allows us to enhance the audit trail with semantic information. 

 

3.1.3 Digital Twin 
The orange ellipses (Figure 2) detail several ROS nodes the architecture relies on. Among them, the 

Digital Twin (DT) maintains an internal representation of the world and robot state. As stated in D6.1 

and further on detailed in D5.1 [4], the DT uses a physics-based game engine simulation to generate 

a digital replica of the estimated belief state of the world. This includes for example information 

provided by the perception components or the feedback of the changes of the robot configuration. For 

the DT, we developed a robotic simulation component for the TraceBot scenario that allows us to work 

with the description of the robotic hardware and import it into the game engine simulation 

environment. This allows the DT to be connected to the robotic system joint information, so that the 

DT representation of the world is automatically updated when the robotic arms move (even if this is 

done through the Gazebo emulation at the moment) while doing manipulation actions. It can thus be 

used for verification purposes. Examples for this are the estimation of the expected robot or object 

configuration after the execution of a given manipulation action, action effects or, as illustrated on the 

figure, rendering the canister pose computed by the vision system to enable a correspondence 

estimation to check if the estimation is well aligned with the percept generated from the camera data. 

For testing and demonstration purposes, we propose to start with specific DT skills which can be 

directly added within the process files (as the `verify_canister` previously mentioned).  

The Digital Twin component can be packaged as a standalone simulation program allowing it to be 

integrated into the system easily without being dependent on the full software stack that is necessary 

to be installed when developing in the game engine. 

 

3.1.4 Cognitive Programming Interface 
Prior to the execution of the plan by the Skill Execution Engine, the Cognitive Programming Interface 

(CPI) is the module used by the human operator to configure the process plan, selecting the 

appropriate skills within the database of skills of the system.  The CPI provides a Graphical User 

Interface to allow the user to program the robot. It allows the user to define a complete task by 

building the desired sequence of skills the robot will perform. 

Mainly, the CPI will receive the user inputs (from the mouse, maybe the keyboard) and once the 

sequence of skills is selected, will publish this sequence through a YAML Process description file to be 

processed by the robot. 

This block will be made up of two nodes – the Graphical User Interface (GUI) and the planner helper. 

The GUI displays information to the user and allows them to select skills. The planner helper aims at 

supporting the user in selecting the appropriate skills depending on their requirements and effect 
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onto the environment. The helper analyses the skills chosen by the user in the GUI to deduce its 

potential impact on the world state (i.e if it was indeed executed by the robot). For that purpose, it 

should query the knowledge base about the effects of the selected skill. Then, it asks the knowledge 

base which skills are feasible according to the updated desired world state and sends the list of feasible 

skills to the GUI so that the user can select a suitable skill to build the sequence. 

The knowledge base is embedded in the Digital Twin (DT) node. So each time the planner helper asks 

the knowledge base, its node publishes a “/query_skill_metadata” to the DT node and receives the 

corresponding answer.  

In addition to the core operation, the CPI will have additional functionality for printing reports, user 

management and system maintenance.  

Authorised users will be able to view and print reports relating to traceability, hardware 

configurations, and audit trails. This will maintain the traceability functions of the project, by allowing 

access to the system configurations, as well as who made/changed/authorised these configurations. 

Authorised users may also make changes to, or add/remove users, and update hardware 

configurations. When updating users, the user can update permissions and login details. Within the 

hardware configuration will be editable values (with predefined ranges and precision) for the 

configuration of the TraceBot system. These may include Operating Speed, Locate accuracy and Grasp 

Attempts to name a few. 

Other config details may also be updated such as GUI preferences. 

 

3.1.5 Motion Planner 
The motion planning module is the ROS tool used to perform Point to Point Planning of arm motions. 

We will rely on the MoveIt package [5], a well-known motion planning framework in the ROS 

ecosystem, which is able to cope with obstacle avoidance.  

We opted to utilise an existing motion planning framework as motion planning is not one of the key 

research focus areas of the project. We decided on MoveIt for it’s easy integration within ROS and 

existing off-the shelf support for the chosen UR arms. This allowed for a quick setup of the motion 

planning and to move towards the testing stages of the project. 

 

3.1.6 Dual Arm Controller 
Interface to the robotic arms is handled by the Dual Arm controller component. This component 

leverages ros_control to define interfaces to hardware resources, i.e. the robot joints and sensors. 

Such ros_control-enabled driver components (Figure 4) provide a means to load/unload and to 

start/stop controllers at runtime, ensuring there is no conflicting access to hardware resources from 

the controllers which use them. Each controller can request access to hardware resources managed 

by ros_control and may also use ROS communication primitives to interact with other systems, e.g. 

to receive commands or to provide feedback from the robot’s sensors. 
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Figure 4 - A ros_control based driver with a single active controller (dark blue) and multiple 
stopped controllers (light blue). Controllers can be switched in real time using ROS services.  

 

Some off-the-shelf controllers are provided by the ros-control organization, such as the 

joint_trajectory_controller, which implements the ability to execute a pre-computed joint-space 

trajectory, and which is already used in the TraceBot mock-up to execute trajectories generated by the 

motion planning module as illustrated by the Execute Trajectory skill in Figure 2. Additional 

controllers implementing custom control laws for specific actions will be provided as a result of task 

T3.2. It will contain a set of controllers to be loaded and launched for the specific manipulation to be 

performed (such as grasp object or insert object as illustrated in Figure 2 and Figure 3). 

Making use of the composability of individual hardware abstraction components into a single 

executable driver component, it is proposed to combine the control of both UR10e robots from a 

unique Dual Arm controller component. This way, individual controllers will be able to claim control 

of the joints of both robots, allowing for a much more efficient way to coordinate control of both arms 

compared to using separate drivers communicating via ROS primitives. 

 

 

 

Figure 5 - A system with standalone drivers coordinating using ROS primitives (top) is much 
less efficient than a composite driver where a single component can directly access resources 

from both robots (bottom). 



TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089) 

 

 

 

 

 

13 

  

 

 

D1.1 System Architecture 

 
3.1.7 Grasp Control 
The Grasp control is the ROS interface to the dexterous hands developed by CEA in WP2.  

To facilitate the software integration, CEA will develop the low-level control command of the to-be-

designed gripper. A software bridge will also be developed between the CEA gripper controller and 

the ROS environment to exchange gripper related data with other WPs (Figure 2/Figure 11).   

In WP2, CEA plans to contribute to the gripper’s low-level controller for activating the selected grasp 

patterns coming from the other WPs as inputs. It aims to perform some identified unitary operations 

that are required by the sterility testing use-case. 

To activate the requested grasp pattern with the gripper, it will firstly be controlled at joint level. 

Control approaches will be investigated for controlling the newly-designed hand device (developed in 

WP2)  either in position (in free space) or in force (when in contact with the object). 

In that perspective, the algorithms developed in the gripper controller will be essential to determine 

accurately the object contact with the manipulation system and to ensure the non-sliding effect of the 

objects during grasping phase, taking advantage of both  piezoresistive and piezoelectric tactile 

sensors and self-sensing actuation units. In addition, precisely controlling the multiple degrees of 

freedoms of the redundant gripper is challenging, especially during complex tasks such as dexterous 

manipulation of objects in space. To reduce this complexity, robust and performant approaches of 

control will be used, likely considering model-based strategies. 

To facilitate the software integration, CEA will develop this low-level controller in a real-time Linux 

based controller. A software bridge will then be developed between this gripper controller and the 

ROS environment to exchange gripper related data with other WPs, especially for receiving the orders 

of grasp planning strategies coming from the other WPs. 

More information on this can be read in Deliverable 2.1 [6] 

 

3.1.8 Camera Processor 
The camera process node encapsulates, for simplicity, the regular camera driver and the advanced 

image processing layers. Deep learning approaches will be deployed to detect and estimate the pose 

of all relevant objects in the project, while the depth sensing will be used for collision avoidance in the 

motion planning of the robot arms, and pose verification and refinement for the non-transparent 

objects. The development of this component is performed with T3.3 and T3.4, as well as in WP4 for 

the visual verification items.  
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3.2 Software deployment on computer units 
 

 

Figure 6 - Hardware Framework Flow Diagram 

 

The flow diagram (Figure 6) is a simplified view of the system detailed in the System Architecture flow 

diagram (Figure 2), detailing only the hardware components of the system. 

This system will consist of 5 or 6 computer units.  

The two primary units (Figure 6 in darker purple) consist of the Linux Controller and Dedicated Twin 

and Visual Processing Unit. 

The primary unit is the Linux controller which will contain the core of the system architecture, and 

will handle the skill execution engine, tracer and other planning controllers (as detailed in 3.1). 

To assist this controller will be a Dedicated Digital Twin & Visual Processing unit. These will be 

running on a dedicated computer as both of these processes have strong computational requirements, 

in particular a powerful Graphics Processing Unit (GPU). A NVidia model is needed for both 

components and will be used for rendering purposes by the Digital Twin and computational purposes 

by the Vision layer. Recorded issues with Nvidia GPU drivers and real-time kernel needed for 

controllers drove the decision to put those components on different computers. 

The remaining units (Figure 6 in lighter purple) are used as controller for the individual hardware 

components. 

The  Gripper Control Unit will be developed by CEA and used as a controller for both the grippers. 

The Linux controller will communicate with this via high-level grasp actions, and the Gripper 

controller will handle the conversion from grasp to joint states, as well as outputting sensor input in 

a usable format. Depending on the final functionality of this, there may be either one or two Gripper 

controllers, therefore dedicating one controller per gripper. 

In addition to this there are two controllers dedicated to the UR10e arms, these are included with the 

purchase of the arms and manage the drivers.   

More details of the other physical components are detailed in the next section.  
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4 Testbed Mechanical Design 
 

They key hardware components are described in more detail throughout this section. With the current 

purchase of the UR Arms, and finalisation on the camera and gripper being used, the next stages of 

development will be constructing the physical system and begin implementation of drivers and testing 

of the integration with the existing system in place. 

All other hardware in the system will be either used to build and emulate the lab environment (e.g. 

worktop & frame) or to comply with safety requirements for use with a collaborative robot (e.g. safety 

zoning scanners/light curtains). 

 

4.1 Overall design 
To date the TraceBot design has been through two iterations. The initial design (Figure 7) consisted 

of the robot arms mounted on a stand which is mounted directly to the table. The camera is directly 

about the workspace facing down at 90°. This design was initially created as a rough draft layout of 

the robot. 

 

Figure 7 - Initial design for TraceBot 

The current design for TraceBot (Figure 8) moves the arms onto a 45° angle to allow for greater 

manoeuvrability within the workspace. These are then mounted on a stand which is fixed directly to 

the floor. By having this fixed to the floor rather than the table, it prevents vibrations of the robot 

disturbing any of the loose objects on the table, as well as providing a sturdier foundation. 

The camera in this design is mounted closer to the arms, and pointing down at an angle of 45° allowing 

for a greater FOV of the work area, and the ability to see the fronts of objects (for things such as labels 

or liquid levels) with reduced need to pick up the objects. 
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Figure 8 - Current design for TraceBot 

 

4.2 Robot arms 
 

The UR10e [7] arms will be used for this system build. Although the UR5e [8] was considered, with 

it’s limited payload of 5kg it was not strong enough to lift both the CEA gripper and any additional 

payload (e.g. picking up sample bottle). This is due to the estimated weight of the gripper itself being 

5kg. 

Although there was discussion to have one UR5e and one UR10e, due to the potential to have one CEA 

gripper (on the UR10e) and one standard gripper, the final decision for two UR10e arms was made to 

allow for testing of one or two of the CEA grippers. 

The UR10e has a 150% higher payload giving it the lifting capacity of 12.5kg. With the weight of the 

gripper taken into account this gives the arm a lifting capacity of 7.5kg which is more than sufficient 

as most objects it will be lifting will be less than 1kg. 

By going with the larger arms it also gives an increase reach of up to 1.3m (51.2in), vs the UR5e’s 

0.85m (Figure 9). 
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Figure 9 - Reach comparison between UR5e Robot Arm (Red Sphere) and UR10e Robot Arm 
(Yellow Sphere) 

Interfacing of the UR Arms is greatly helped by the use of open-source Universal Robots software 

compatible with use in a ROS environment.  These arms will be controlled via the programmable logic 

developed as part of Work Package 3.  The programmable logic will give the UR arms the information 

required for path optimisation for each of the tasks to be executed. Considerations for collision 

avoidance will also be required. 

 

4.3 Camera 
 

 

Figure 10 - The Intel RealSense D435 depth camera. From left to right: NIR sensor, NIR 
projector, the other NIR sensor and the RGB sensor 

 

For the camera we are using the Intel RealSense Depth Camera D435 [9]. With a range of 0.3m – 3m 

and a Field of View (FOV) of 87° x 58°, it is the most suitable sensor of the RealSense product range 

for our application.  
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This camera also has ROS drivers readily available, both for simulation and real hardware, allowing 

for easy implementation with the system. 

When mounted at 45° (Figure 8) it provides sufficient coverage of the work area, with the robot able 

to lift items into view if needed for a clearer picture. Other options may also be considered, such as 

using multiple cameras, or eye-in-hand mounting, for better visibility when in operation. 

 

4.4 Gripper 
 

4.4.1 CEA Gripper 
The design rationale for designing the multi-fingered device will follow the technical specifications 

provided by results from Task 2.1 and Deliverable D2.1 [6]. The objectives are to guarantee a high 

degree of versatility (i.e. capability to grasp and manipulate the various objects from TraceBot use-

case), and at the same time improving the quality of force control to improve skill and overall 

manipulation efficiency and safety. To this respect, CEA will take advantage of innovative 

instrumentation technological building blocks (mainly, the actuators and the sensors embedded in 

the gripper) to extend its capacities in terms of force-control and force-sensing. To this end, the to-

be-designed CEA gripper will exploit low-inertia, low-friction and self-sensing actuation technology, 

together with the previously developed tactile sensors in Task 2.2, to provide such device with high 

performance in terms of sensing capabilities, while also being suitable for fine finger motions. 

From a control perspective, on one hand, using such force-controlled actuation technology requires a 

real-time based controller (Figure 6/Figure 11) (running deterministically at a few milliseconds), to 

ensure satisfactory performances in terms of torque sensing and control at the actuation level. On the 

other hand, exploiting piezoresistive and piezoelectric sensing units requires dedicated electronic 

units (Figure 6/Figure 11) for low-level signal treatment and digitalization. Such electronic units are 

foreseen to be embedded in the gripper itself, and to send data through communication bus to the 

main CEA real-time Linux based controller. The instrumentation and electronic units dedicated to 

control for the CEA grippers will be developed in the coming months in the context of the Task 2.3. 
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Figure 11 - Hardware and software interfaces between CEA gripper developed in WP2 with 
respect to other WPs. 

 

4.4.2 Stand-In Gripper 
The Gripper will act as both an actuating manipulator and to provide tactile feedback to the system.  

The final gripper hand to be developed by CEA will not be delivered until Milestone 3and so an interim 

gripper is required for initial testing.   

For an interim gripper we are looking to use the Robotiq 2F85 gripper [10] which should provide 

sufficient functionality for early testing of the system, until getting access to the CEA gripper. 

 

Figure 12 - Robotiq 2F85 Two Fingered Gripper [10] 
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Using a simpler gripper such as the Robotiq one enforces us to consider use cases that can be handled 

with a significantly simpler tool. More advanced and dexterous manipulation will be addressed once 

the CEA gripper is provided.  Further details on the specification of the CEA gripper is provided as 

part of deliverable D2.1 [6]. 

  



TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089) 

 

 

 

 

 

21 

  

 

 

D1.1 System Architecture 

 

5 Risk Evaluation 
 

As part of the standard design process, risk evaluation tools can be used in order to predict potential 

points of failure for a system and to consider how to mitigate them in the design.  A typical tool for 

this is the use of a Failure Mode and Effects Analysis (FMEA).  The objective of this tool is for a 

designer to identify potential points of failure in a system and provide features in the designed product 

to reduce or remove the failure points.  This is typically used on complex systems composed of 

multiple sub-assemblies, to provide a thorough and systematic approach to ensure that all potential 

points of failure are considered as part of the design. 

In development of an FMEA, one must consider the conceptual designs against the use case of the 

system (i.e. what is the purpose of the system and what obstacles are present that prevent the system 

from achieving its purpose). 

There are 2 scenarios present, which include use of single robot arm and dual robot arms.  With single 

robot arm, the main considerations are focused on collision avoidance and correct manipulation of 

objects.  In the dual robot arm situation, the motion controller must make decisions on, which arm is 

responsible for each task – this adds an element of complexity to the system.  

The complete TraceBot system has been described above completely, as a combination of the 

architectures and the testbed. For each specific element of the system architecture, there are 

deliverables in place for each respective work package that provide thorough and detailed content 

describing the required functionality & design of the respective architecture components and their 

rationale ( [3] [4] [6]).  Thus, a separate FMEA is not required for the architecture elements, as this 

would be redundant with respect to work being carried out in these deliverables. 

Considering the testbed mechanical design alone, there were a few noteworthy elements that required 

careful consideration in order to provide an optimal design.  As mentioned above, the specification of 

the UR5e was not sufficient for our application, as the mass of the CEA gripper alone was expected to 

5kg alone – thus the decision was made to upgrade the robot arms to the UR10e specification.  The 

other consideration was based on maximising the field of view, the camera position was amended to 

have a 45° field of view from the direct plane normal to the testbed surface.  As the number of 

hardware components for the TraceBot is quite low, the need for an FMEA was deemed unnecessary 

at this stage of the project as the issues mentioned above have been resolved by iterative design, which 

was possible due to simplicity of the system needs (purely accounting for the basic functionality of the 

components and not for the full use case of the system). With the project containing 2 system 

development phases after the initial hardware integration (MS3 & MS4), it is expected that any further 

design amendments required to optimise that system will be captured within these iterations and that 

this system architecture will evolve with the project. 
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6 Deviations from the workplan 
 

The following deviations from the workplan are listed below, with reasoning provided for their 

necessity. 

1. Payload Limitations of UR5e Arms – Since the combined weight of the anticipated 

bespoke gripper hand and the expected payload to be manipulated would be greater than the 

designed capabilities of the UR5e arm, it was decided that the TraceBot system would require 

an upgrade to UR10e arms.  The expected payload is not anticipated to approach anywhere 

near the limits of the UR10e arms.  These UR10e arms have since been acquired by Astech at 

a cost within the original anticipated budget for the UR5e arms. The plan for these arms in 

2022 will be an initial setup, integrating the work done as part of Deliverable 6.1 [1] with these 

arms, to provide a first demonstration of hardware control. Building off the back of this work 

will be further development of the testbed and associate subsystems to facilitate a successful 

hardware integration as part of Milestone 2. 

 

2. Risk Evaluation Tools – In the original agreement for this task, discussion as made around 

the use of tools for risk evaluation of the system to be built, particularly around the notion of 

developing an FMEA.  As discussed in section 5, it was decided that the use of an FMEA was 

not required at this point, as a comprehensive FMEA would require a completely defined use 

case, which is not available from the outset of the project due to its research nature (refer to 

Deliverable 1.6 [2] for further details on use case description). 

 

3. Future Developments of the System Architecture – Due to the research nature of the 

TraceBot project, it is expected that this system architecture will develop and evolve with the 

project. Thus, it should be revisited and amended to capture any deviations from this initial 

draft to represent milestone 2. 
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7 Conclusion  
 

A complete and thorough overview of the complete system architecture has been provided with a 

detailed description of each of the components and functions.  References to relevant work package 

deliverables are additionally provided to provide even more detail on the development of system 

components.  All major hardware components have been specified and listed with an initial arrange 

designed as a concept in order to maximise the utility of each component. 

This architecture is the foundation of the work required to develop an initial hardware integration to 

be delivered as part of the work for Milestone 2 and is linked to tasks across WP2-WP6. 
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8 Annexes 

8.1 YAML process illustration 
 

The following figures are provided to illustrate how is structured a definition of a process, as a 

combination of skills, which is then loaded for execution by the Execution engine (please refer to 

section 3.1.1). 

Figure 13 presents the YAML file from which the simplified use case is loaded. It is defined as a 

sequence of six successive operations or skills. In this example, all items are defined into other files. 

This functionality is convenient for reusing complex behaviours while hiding their complexities.  The 

current specification only handles the data transmission in between skills when appropriate. 

Data transmission is illustrated in between the 2nd and 3rd skill defined. Skill `detect_canister` 

generates a result, named `detect_canister_result`. This information is used by the following skill, 

`Grab_canister`, which requires this information as input to be well configured. The connection of 

skills input-output requires the knowledge of these parameter format, we are currently looking at how 

such connection could be facilitated for the user, in particular for such high-level operations. 

 

Figure 13 - Simplified use case illustration – insert Canister into tray. Root file, referencing 
the six skills it relies on. 

Following Figure 14 present a snapshot of one of the included skills, `grab canister`. The required 

parameters are firstly defined in the `params` section (they are indeed configured in the upper file 

presented above). This skill is again a combination of skills. The second one, named `compute 

trajectory to grasp pose` is itself a skill defined in another file which path is indicated. A process 

definition is thus hierarchical and has potentially no limit of level complexity. 



TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089) 

 

 

 

 

 

25 

  

 

 

D1.1 System Architecture 

 

 

Figure 14 - Simplified use case illustration – grab canister (snapshot) 

The other skills presented on the screenshot are defined as `TraceableAction`, which is the base 

structure we are using to gather all partner developments. The term “action” indicates that the 

component is implemented as a ROS action, which name and data format are then introduced. The 

advantage of relying on standard ROS format is that the learning curve for defining a skill-like 

component is significantly reduced (“any” ROS action could be inserted in a skill process). Note that 

other skill models are available (such as ROS service-like, or “ad-hoc” python script for instance).  

The `Traceable` part of the skill format name is related to the specific wrapper implemented to add 

the tracing capability. Without any change in the underlying ROS action server, the input, result and 

feedback of the action is automatically gathered and sent to a unique canal. This functionality added 

in TraceBot could be generalized to centralize traces of any action-based ROS programme. 

To conclude, by parsing such file, the Execution engine is able to check the sanity of the process (under 

development), know which component has to be loaded (in such case mainly ROS action clients to be 

defined), and how to connect the outcome of one component to the following one. 
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8.2 Definitions 
 

Term Definition 

FMEA Failure Mode and Effects Analysis 

CEA Commissariat à l'énergie atomique et aux énergies alternatives 

Alternative Energies and Atomic Energy Commission 

UoB Universität Bremen 

University of Bremen 

UR Universal Robot 

FOV Field of View 

DT Digital Twin 

VPU Visual Processing Unit 

GPU 

NEEMS 

ROS 

CPI 

GUI 

WP 

Graphics Processing Unit 

Narrative Enabled Episodic Memories 

Robot Operating System 

Cognitive Programming Interface 

Graphical User Interface 

Work Package 

 

  



TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089) 

 

 

 

 

 

27 

  

 

 

D1.1 System Architecture 

 
8.3 Table of Figures 
 

Figure 1 - Visualisation of the TraceBot system within the Digital Twin ....................................................... 5 

Figure 2 - System Architecture Flow Diagram. .................................................................................................... 7 

Figure 3 - Hierarchical finite state machine generated by the Skill Execution Engine. Based on the 

sequences of behaviours described in the simplified use case process file, insert canister. ............... 9 

Figure 4 - A ros_control based driver with a single active controller (dark blue) and multiple 

stopped controllers (light blue). Controllers can be switched in real time using ROS services. ....... 12 

Figure 5 - A system with standalone drivers coordinating using ROS primitives (top) is much less 

efficient than a composite driver where a single component can directly access resources from 

both robots (bottom). ................................................................................................................................................... 12 

Figure 6 - Hardware Framework Flow Diagram ................................................................................................ 14 

Figure 7 - Initial design for TraceBot ..................................................................................................................... 15 

Figure 8 - Current design for TraceBot ................................................................................................................. 16 

Figure 9 - Reach comparison between UR5e Robot Arm (Red Sphere) and UR10e Robot Arm 

(Yellow Sphere) ............................................................................................................................................................. 17 

Figure 10 - The Intel RealSense D435 depth camera. From left to right: NIR sensor, NIR projector, 

the other NIR sensor and the RGB sensor ........................................................................................................... 17 

Figure 11 - Hardware and software interfaces between CEA gripper developed in WP2 with respect 

to other WPs. .................................................................................................................................................................. 19 

Figure 12 - Robotiq 2F85 Two Fingered Gripper [10] .......................................................................................... 19 

Figure 13 - Simplified use case illustration – insert Canister into tray. Root file, referencing the six 

skills it relies on. .......................................................................................................................................................... 24 

Figure 14 - Simplified use case illustration – grab canister (snapshot) .....................................................25 
  



TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089) 

 

 

 

 

 

28 

  

 

 

D1.1 System Architecture 

 

9 References 
 

[1]  S. Rosidi and B. Gordon, “D6.1 ROS Middleware Mock-Up,” 2021. 

[2]  T. Cichon and C.-H. Coulon, “D1.6 Use Case Specification,” 2022. 

[3]  M. Vincze, J.-B. Weibel, P. Mania and F. Vial, D4.1 Traceability Framework for Laboratory 

Automation, 2022.  

[4]  M. Beets, “D5.1 Definition of the Conceptual and Reasoning Framework and Semantic Models,” 

2021. 

[5]  I. Sucan A. and S. Chitta, “"MoveIt", [online] Available at https://moveit.ros.org/”. 

[6]  M. Grossard, F. Gosselin and J. Escorcia, “D 2.1 Technical specifications as recommendations 

for the design of the multi-fingered gripper,” 2022. 

[7]  “UR10 Robot,” Universal Robots, [Online]. Available: https://www.universal-

robots.com/products/ur10-robot/. [Accessed 31 01 2022]. 

[8]  “UR5 Robot,” Universal Robots, [Online]. Available: https://www.universal-

robots.com/products/ur5-robot/. [Accessed 31 01 2022]. 

[9]  “Depth Camera D435,” Intel RealSense, [Online]. Available: 

https://www.intelrealsense.com/depth-camera-d435/. [Accessed 2022 01 31]. 

[10]  “2F85-140 adaptive robot gripper,” Robotiq, [Online]. Available: 

https://robotiq.com/products/2f85-140-adaptive-robot-gripper. [Accessed 31 01 2022]. 

 

 

 


