
Traceable Robotic Handling of Sterile Medical Products

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089), 2021-2025

D6.1 ROS Middleware Mock-Up

Deliverable 6.1

Deliverable Title D6.1 ROS Middleware Mock-Up

Deliverable Lead: ASTECH PROJECTS LIMITED

Related Work Package: WP6: Integration & Evaluation

Related Task(s): T1.1 Use Case Specification

T1.2: System Architecture

T6.1: Demonstration Hardware Integration

T6.2: Software Integration

Author(s): Syafiq Rosidi (AST)

Ben Gordon (AST)

Dissemination Level: Public

Due Submission Date: 26/11/2021

Actual Submission: 29/11/2021

Project Number 101017089

Instrument: Research and innovation action

Start Date of Project: 01.01.2021

Duration: 51 months

Abstract

ROS middle-ware mock-up, demonstrating UR arms control

using ROS simulated environment.

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

2

D6.1 ROS Middleware Mock-Up

Versioning and Contribution History

Version Date Modified by Modification reason

v.01 10.11.2021 Syafiq Rosidi (AST) First Issue

v.02 11.11.2021 Anthony Remazeilles (TECN) Technical Additions

v.03 12.11.2021 Syafiq Rosidi (AST) Ready for internal Review

v.04 16.11.2021 Emily Dixon (AST) Proof Checking

v.05 16.11.2021 Patrick Mania (UOB) Internal Review

v.06 17.11.2021 Jean-Baptiste Weibel (TUW) Internal Review

v.07 26.11.2021 Syafiq Rosidi, Ben Gordon

(AST)

Amendments based off Internal Review

Comments

v.08 26.11.2021 Emily Dixon (AST) Final Proof Checking

V1.0 29.11.2021 Syafiq Rosidi (AST) Final Version Ready for submission

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

3

D6.1 ROS Middleware Mock-Up

Table of Contents

Versioning and Contribution History ... 2

Table of Contents ... 3

1 Executive Summary .. 4

2 Introduction ... 5

3 Description of Work & Main Achievements .. 8

3.1 System Architecture .. 8

3.2 CAD Mock-Up: Mechanical Concept Design ... 11

3.3 Software Integration ... 14

3.3.1 ROS Framework .. 14

3.3.2 Digital Twin (UoB) ... 15

3.3.3 Further Development ... 16

3.4 Link to Milestone MS1 ... 16

4 Deviations from the workplan .. 19

5 Conclusion ... 20

6 Annexes .. 21

6.1 Annex A ... 21

6.2 Annex B ... 22

6.3 Annex C ... 23

7 References ... 24

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

4

D6.1 ROS Middleware Mock-Up

1 Executive Summary

The Key Objective of this deliverable was to demonstrate initial functionality of the ROS framework

to control elements of the system to be developed over the course of the TraceBOT project. The

methodology intended to achieve this involved the development of system architecture (linked into

Task 1.2) to identify the different elements and interfaces within the system; the creation of a CAD

Mock-Up of the lab environment and; finally, the development of the ROS interface for

programmable elements to be integrated. We present results demonstrating the control of the

selected UR arms and beyond that, an attempt of the system being able to implement the

Simplified Use Case as defined in Task 1.1.

This deliverable demonstrated successful functionality of control of simulated elements using the

ROS middleware development – the next steps from here will be to substitute the simulated

environment with ROS drivers for the physical hardware.

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

5

D6.1 ROS Middleware Mock-Up

2 Introduction

The TraceBOT project has been structured to allow work to develop in parallel across a number of

partners. Parallel development can open up a risk to the project as there can be issues

interfacing between the respective systems that may only be identified once the different building

blocks are integrated together – this tends to be towards the testing phase at the end of the

project, when timelines are tight.

In order to minimise this interfacing risk, the project took two decisions. The first was to utilise a

ROS middleware framework. The primary advantage of using ROS is its ease of integration –

partners within the TraceBOT project will be able to carry out focused development on their

respective work packages and the ROS framework will allow these packages to easily interface

together.

The second decision was to begin an initial integration effort which drove discussions on the

interface and connectivity of the different components. At this early stage of the project, we

intended to connect component mock-ups, which would then be progressively replaced by real

implementations. Nevertheless, these discussions will reduce the risk of incompatibilities between

developments in the next year of the project.

Leading up to this deliverable, significant work has been completed across all the different Work

Packages. Of particular note to this report are the links to Work Package 1 [WP1] – in particular

around work on Tasks 1.1 (Use Case Specification) and 1.2 (System Architecture). As a group, we

have developed and agreed upon a ‘Simplified Use Case’ [Figure 1] as a reduced set of tasks to test

initial control of the system. The scope of this initial testing includes control of simulated UR arms;

communications between a simulation of the testing environment and the Digital Twin; and an

attempt of a successful cycle of the defined Simplified Use Case.

The Simplified Use Case presented in Figure 1 concerns the insertion of the canister into the tray.

This is composed of four main steps: detect the canister, grab the canister, move towards the tray,

and finally insert the canister. We recognised the need to detail these steps to identify more atomic

operations that would be required, and this would also allow us to highlight the expected

necessary contribution of the WP/partners to its implementation. This is why the figure also

presents a distribution of the steps per partner.

In this first analysis, we do not expect a completely functional system to be set up at this stage, but

rather setup the interfaces of them, to ensure successful interaction and a common understanding

of the overall architecture. The simulation tools available in ROS are used to provide a

visualization of the system actions but the resulting simulation of physical interactions (in

particular for grasping objects) may not be sufficiently mature yet therefore the use of

“workaround” packages (such as that used for the gripper) in order to simulate real-world

interactions.

As required, we have simplified the emulation of some operations with our intention being focused

on the overall architecture. The simplified use case provides focus on development of some initial

tasks. This development and learning can then be extended to other tasks on the complete use

case.

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

6

D6.1 ROS Middleware Mock-Up

Finally, details of both the hardware specification and software specification of the system will be

discussed to provide an overview of all elements within the system. Having all the elements

mapped out within an interconnected system will help to identify potential risks and challenges

around interfacing and provide the opportunity to develop proactive solutions to overcome these.

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

7

D6.1 ROS Middleware Mock-Up

Figure 1: Graphical Representation of the Simplified Use and the respective responsibilities
for each Partner

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

8

D6.1 ROS Middleware Mock-Up

3 Description of Work & Main Achievements

Over the past 11 months, the focus of the work described within this deliverable has been focused

on creating the fundamental building blocks required to integrate the respective TraceBOT systems

from Work Packages 2-5. With Milestone 1 being focused around integration with the Digital Twin,

the key focus was on building a ROS framework to allow all the systems to interface.

3.1 System Architecture
The development of software architecture provides a structural approach to understanding all

software elements and their interactions within a given system. This will ensure that all required

elements for the system are considered and that provisions are made for anything that has been

identified as missing during the generation of this software architecture.

The approach for software development is to identified the key hardware involved, as the software

will be used to control or receive inputs from this hardware. The core hardware involved in the

system is listed below:

• UR Arms

• Gripper

• Camera

• Linux Controller

• Dedicated Digital Twin & Visual Processing Unit

Interfacing of the UR Arms is greatly helped by the provision of proprietary Universal Robots

software compatible with use in a ROS environment. These arms will be controlled via the

programmable logic developed as part of Work Package 3. The programmable logic will give the

UR arms the information required for path optimisation for each of the tasks to be executed.

Considerations for collision avoidance will also be required.

The Gripper will act as both an actuating manipulator and to provide tactile feedback to the system.

The final gripper hand to be developed by CEA will not be delivered until at least after Month 25 of

the project (after Milestone 2 Initial Integration) and so an interim gripper is required for initial

testing. We have had discussions to consider interim grippers (e.g. Robotiq 2F85) but the general

interim gripper concept would expect to have only 2 signal controls (open & close). Discussions on

the specific control on the bespoke gripper hand have been deferred to later in the project once it

is more defined.

The Linux Controller will manage all of the skills & actions of the system, as well as hosting all of

the drivers for the hardware, and provide a visual interface to allow operator interaction with the

system. A secondary system in conjunction, equipped with a GPU, will provide higher processing

power for the Digital Twin and Visual Processing.

The final piece of major system hardware is the camera used. This has been agreed to be an Intel

RealSense D435 and will be used as a vision sensor, with the input to be matched against the

Digital Twin for verification and traceability purposes.

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

9

D6.1 ROS Middleware Mock-Up

All other hardware in the system will be either used to build and emulate the lab environment (e.g.

worktop & frame) or to comply with safety requirements for use with a collaborative robot (e.g.

safety zoning scanners/light curtains).

The collection of control and perception items involved in TraceBOT is significant, and it is

therefore complex to provide an exhaustive and useful description of all of them. Nevertheless we

rely on the implementation choice in TraceBOT that is to use a skill-based framework, in which

each behaviour is encapsulated into a skill (behaviour involving robot motions, perception, gripper

actuation, tactile sensing, etc…). The skill framework provides a programmer an intuitive structure

via a standardised description of each behaviour. In this framework, the following core principles

are considered:

• Each behaviour is represented as a skill

• A skill may itself rely on a set of skills

• Skill gets combined into a process.

In the use case presented on Figure 1, the complete process is defined as the combination of 4

skills, which are themselves composed of subprocess containing various skills. For now, the

hierarchical structure is of level 2, but the framework is scalable. At execution time, the Execution

engine is responsible for launching each of the required skills according to the plan.

The integration effort consists then to implement each behaviour as skills. Taking advantage of the

ROS functionalities, the Skill framework is provided with the possibility to implement “atomic

skills” as ROS actions. As a starting point, it has been thus decided to implement each of the leaf

skills (that are distributed per partner) as ROS actions, following the specificities of the skill

framework.

At the integration level, the advantage of using a framework is that it encapsulates all behaviours

at the highest control level and provides a common communication interface. Then the

implementation of each component may require more complex structure, but that is the

responsibility of each partner provider. For instance, the implementation of the object detection

functionality requires a ROS camera driver, a visual perception component to launch required

image processing techniques on an image received from the camera. But at the integration level it

is represented as a detect object skill which provides the estimated pose of the required object.

The complexity of the implementation is hidden from the execution engine that only handles the

management of skill launch, monitoring, and parameter transmission.

Figure 2 presents a snapshot of the current architecture displaying few skills implemented as ROS

actions (in purple), which are progressively triggered by the Execution engine according to the

process description (in green). The skills are connected to the ROS components they require to

perform their duty. For instance, the Verify Canister internally interacts with the Digital Twin to

perform that operation. As an aside, the tracer is used to collect operational details to be

converted into the audit trail, which gets progressively filled. To get a systematic tracing, a

derivation of the skill concept has been prepared to get “Traceable Skills”, in which the input,

feedback (at a given frequency) and outputs (actions result) gets automatically collected, packed

and transmitted to the Tracer through regular topic communication. The implementation currently

focuses on skills implemented as ROS actions, but it will be progressively extended to consider

other skill types, or more detailed trace information.

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

10

D6.1 ROS Middleware Mock-Up

On an integration perspective, all skills involved within the simplified use case have been defined

as an action interface, and are available in the TraceBOT shared code repository (Annex 1). All

skills have been implemented where possible. Where full implementation is not yet possible (i.e.

lack of functionality) mock-ups have been setup to allow so that the complete process can be

already launched (Video 1).

Figure 2: Software architecture developed using the online in-Browser Flowchart creator
draw.io. This version of the architecture shows some example skills for a given TraceBOT
process and how the process ultimately connects to the Camera Nodes, digital twin

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

11

D6.1 ROS Middleware Mock-Up

3.2 CAD Mock-Up: Mechanical Concept Design
In order to provide an initial visualisation of the TraceBOT setup, a CAD Mock-Up was developed to

include a basic overall model, including the robot arms, example gripper units and some of the

apparatus to be manipulated. Images of these can be seen in Figure 3. The setup is initially quite

basic with both arms mounted on a block at 90° orientation to the table surface. The camera is

setup looking directly on the table surface.

There are a few limitations that were identified from this initial mock-up. The first of these relates

to the specification of the UR5e robot arms. CEA identified that the likely weight of their bespoke

gripper hand would approach 4 to 5kg1 - the maximum payload that a UR5e is designed to

manipulate. In addition to this, the gripper would be expected to manipulate an object weighing

approximately 1 kg. Thus, it was decided that a robot with a larger payload capability would be

required.

Both UR10e and UR16e models were considered, which both have a bigger payload (10kg and 16kg

respectively) as well as a larger reach. Figure 4 provides an illustrative comparison between the

UR5e and UR10e arms. It is clearly visible that the reach, size and construction of the UR10e arm

are significantly larger, to provide required capability of handling a larger payload. Figure 5

provides a comparison between the UR10e and UR16e robotic arms with the UR16e demonstrating

an even sturdier construction than the UR10e. The larger size of both the UR10e and UR16e may

provide some loss of flexibility in manipulation actions, however, these do not appear to be

significant.

In addition to the greater payload capability, the greater robotic arm size provides a greater reach.

This comparison is illustrated in Figure 6, with the UR5e arm showing limitations in potential

reach, whilst the UR10e appears to demonstrate accessibility to all areas of the workstation. Thus,

the consortium decided that the UR10e arm was much more suitable to the TraceBOT application in

comparison to the UR5e arm and that the project should progress under the assumption of UR10e

arms being used. The UR16e arms were not considered any further since the UR10e was deemed

sufficient for the applications and would cost less than the UR16e.

A final consideration on the design of the workstation was based on the orientation of the robotic

arms. It was identified that the initial design concept with the robot arms at a 90° could present a

potential risk of singularities in programming the system. Thus, a layout of the system with the

arms set at 45° was drafted, as seen in Figure 7. This is to reduce the risk of singularities in

programming robotic motions. The robot arm mount is also made independent from the

workstation, providing better structural support.

1 Note that the weight of the envisioned gripper is of similar weight to comparable dexterous hand. For
instance, the Shadow robot hand weights 4.2 kg.

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

12

D6.1 ROS Middleware Mock-Up

Figure 3: Initial CAD Visualisations of the TraceBOT workstation

Figure 4: Visual Comparison between UR5e (left) and UR10e (right) Robot Arms

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

13

D6.1 ROS Middleware Mock-Up

Figure 5: Visual Comparison between UR16e (left) and UR10e (right) Robot Arms

Figure 6: Reach Comparison between UR5e Robot Arm (red sphere) and UR10e Robot Arm
(yellow sphere)

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

14

D6.1 ROS Middleware Mock-Up

Figure 7: Illustration of UR arms mounted on an independent mount oriented at an angle of
45° to the workstation surface. The camera location has been adjusted to provide a better
field of view for using a single camera. Later discussions will include detailed investigation
optimising visual perception strategies.

3.3 Software Integration

3.3.1 ROS Framework
The initial TraceBOT Description package was created by Tecnalia, then developed upon by Astech.

A gazebo simulation and MoveIt configuration (for point-to-point robotic arm motion planning)

were added, as well as replacing the abstract shapes with accurate models of the arms, camera,

gripper and environment (such as pump, table, stand and canister).

Figure 8 TraceBOT in RViz/MoveIt Figure 9 TraceBOT in Gazebo

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

15

D6.1 ROS Middleware Mock-Up

The Description contains all of the models required to bring the robot together, such as the stand

for the arms, and other environment models such as the pump, table and canisters. A URDF file

brings these components together to form a working model of the TraceBOT system in RViz

(Figure 8). The MoveIt Config package is used for the path planning of the arms and grippers. These

can be interacted with within RViz (Figure 8), or by other ROS packages. Until we begin testing with

physical hardware, we also have the Gazebo package (within TraceBOT mock-up), in order to

simulate the robot (Figure 9). In the simulated environment the robot can pick up and move objects

within the scene (Video 2). This allows the object to be fixed to the gripper when the fingers make

contact. Currently to avoid issues the collision gets disabled when the object is picked up, then re-

enabled on release to prevent physics issues in Gazebo.

The description and gazebo packages make use of other 3rd party repositories for the UR Arms,

RealSense Camera and Robotiq Gripper. These provide the models and URDF files for RViz and

gazebo, as well as the drivers for the physical hardware.

3.3.2 Digital Twin (UoB)
The TraceBOT Digital Twin contains a visualisation of the robot and environment within unreal

engine. This is used as a comparison for every action that the robot takes, allowing for errors or

deviations between expectation and reality to be found.

A TraceBOT Digital Twin interface is used to allow the Digital Twin to communicate with other

TraceBOT Packages, in particular for enabling all verification processes, or to fill the DT with

sensor input. The DT is also connected to the robotic system joint information, so that the DT

representation of the world is automatically updated when the robotic arms move (even if this is

done through the Gazebo emulation).

Figure 10: TraceBOT Digital Twin

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

16

D6.1 ROS Middleware Mock-Up

3.3.3 Further Development
All of the TraceBOT packages are contained within a structured git project (Annex A), allowing

everyone in the consortium to view, add to, or change any of the available packages.

3.3.3.1 TraceBOT Tracer (TUW)

The tracer component developed as part of the TraceBOT project is responsible for creating the

final audit trail based on the process execution. It therefore needs to keep track of every action the

robot is taking and the data justifying this action, but also the data proving the accurate execution

of any given action.

To achieve this, the tracer relies on Traceable Skills (every input, output and feedback of every

skill is kept track of automatically), and the idea that verification can be implemented as skills.

Thanks to the flexibility of the skill definition, a given action and its corresponding verification can

be combined as a Verified Action. The verification provides some level of guarantee that the action

was successful and the data gathered both from the action and the verification step allow a better

understanding of the process execution.

To keep track of all the relevant information, the tracer is directly connected to both the skill

execution engine and the Digital Twin, which can represent the robot knowledge at a given time

through the concept of Narrative-Enabled Episodic Memories (NEEMs).

3.3.3.2 TraceBOT Msgs (Tecnalia)

The Msgs repository contains all of the custom ROS interface definitions, such as messages,

services and actions for the TraceBOT project.

3.3.3.3 TraceBOT Processes (Tecnalia)

Process contains a sequence of skills grouped into a smach state machine. This allows for control

over all of the sub-sub-tasks (skills/actions), and groups them together into sub-tasks and tasks

in a similar structure as shown in the simplified use case (Figure 1).

Each skill contains ROS Action servers with a defined interface in order to share information with

other ROS nodes through Goal, Feedback and Result messages. The TraceBOT process execution

manager guarantees that the skills are executed in the right order and connect output and input of

actions that depend on each other.

3.4 Link to Milestone MS1
The timing of this deliverable is aligned with the achievement of the first Milestone, MS1, named

Traceable Semantic Twin & Initial integration.

Video 3 attempts to illustrate most of the architecture and integration items. But as all may not be

straightforward to capture from the video, we comment here on the Milestone related to the

software and integration effort. There are the following:

[WP1] Use Cases, Verification Plan & Initial Architecture Defined

The integration effort has started with the extensive description of the complete use case. To

reduce complexity of the first integration, we narrow it down to the simplified use case presented

in this document. This document also provides details on the architecture choices we made.

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

17

D6.1 ROS Middleware Mock-Up

[WP4] Traceability Framework Established in Simulation

A first version of the traceability structure or framework is proposed and implemented, as

mentioned in this document. The notion of “traceable skill” is introduced, implemented as a

wrapper of skills, enabling to automatically handle the transmission of information towards the

tracer component. On the tracer end, everything is kept track of using IDs attached to every

message. This helps distinguishing between messages even if they arrive out of order because of

network bottleneck, and enable the execution of parallel skills while guaranteeing a correct

structure in the final trail. The tracer collects all information and is then able to create a unique

trail of information. The tracer also saves the information received regularly during execution

guaranteeing that no data will be lost in case of a software issue, a situation in which a valid audit

trail is of particular importance. A barebone “audit trail” maybe formatted in HTML, is currently

prepared. We would like to then present such materials to the Advisory Board, to converge

towards useful content and format. In further iterations, the tracer will be more tightly connected

to the concept of Narrative-Enabled Episodic Memories (NEEMs) from the Digital Twin to enable a

more complete representation of the robot knowledge during every skill execution.

[WP4] First Verification Task Implemented

In parallel with the traceability framework, work has been underway to implement a first

verification task. As mentioned previously, verification tasks will also be implemented as skills

and, therefore, benefits from all the work done in the process execution manager and the

Traceable Skills. In line with the objectives of the simplified use-case, the first verification task is

kept simple and lets us test the validity of our architecture. We chose to use the comparison

between the expected canister pose (given by the Digital Twin) after the canister insertion in the

tray and the detected canister pose as given by the ‘LocateCanister' skill.

[WP5] Definition of the Conceptual, Reasoning Framework and Semantic Models

The main framework supporting the digital twin has been identified and prepared. We

conceptualized a hybrid knowledge-based approach for the sterility testing use case which will

combine symbolic representation techniques with reasoning methods supported by a game engine

based Digital Twin. The underlying concept will be outlined in more detail in the related deliverable

D5.1. We are also studying the possibility to use the reasoning models also within the intuitive

programming interface.

[WP5] Fundamental Simulation Aspect are Available in the TST

 We have derived the fundamental, models required for the Digital Twin to handle the relevant

manipulation tasks in the use case. Based on that, we have derived the required architecture and

modalities in the game engine system which have to be implemented to support DT-based

verification actions in sterility testing scenarios.

Fundamental aspects to support that functionality have been developed and provided in the DT

simulation environment. This includes, for example, controllable dual robot arms as well as

objects and environmental features involved in the process (Video 3).

More details on the system are provided in the upcoming Deliverable D5.1

[WP6] ROS Middleware Mock-up (D6.1)

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

18

D6.1 ROS Middleware Mock-Up

This deliverable effectively describes the ROS mock-up.

[WP6] Virtual PC Distribution for Framework Evaluation

We decided to consider as much as possible standard installation and deployment tools as

provided by ROS (roslaunch, rosinstall, wstool, …). On the main code repositories, we incorporated

some CI tools to automatically verify the compilation and installation on fresh environment using

containers and industrial_ci. The DT is for now deployed as a standalone executable.

[WP6] Initial Specification of Hardware & Software Architecture

This item is covered in the previous sections of this document.

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

19

D6.1 ROS Middleware Mock-Up

4 Deviations from the workplan

There are 2 main deviations from the workplan mentioned in this deliverable that are worth

discussion in this section:

1. Payload Limitations of UR5e Arms – Since the combined weight of the anticipated bespoke

gripper hand and the expected payload to be manipulated would be greater than the

designed capabilities of the UR5e arm, it was decided that the TraceBOT system would

require an upgrade to UR10e arms. The expected payload is not anticipated to approach

anywhere near the limits of the UR10e arms. These UR10e arms have since been acquired

by Astech at a cost within the original anticipated budget for the UR5e arms.

2. Virtual PC Distribution for Framework Evaluation – We no longer required a virtual PC

distribution as using git provides easy installation of packages as well as any dependencies

they require. Allowing for fresh installs rather than a virtual workspace with everything

pre-installed, also allows us to catch any dependencies that haven’t been included, and

therefore add them.

We do still have tools in place such as Cl to evaluate the framework systematically, and

Tecnalia is generating docker images with the TraceBOT components installed which

servers a similar function to the virtual PC.

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

20

D6.1 ROS Middleware Mock-Up

5 Conclusion

The original purpose of this deliverable was to demonstrate control of UR arms using a ROS

middleware framework. We believe that this objective has been met and exceeded, with the

benefit of providing a solid platform for future development. An initial system architecture has

been defined that provides an illustration of the typical software elements and interfaces included

in the system as well as a concise description of the major functional hardware that will provide

sensing and control of the system. A CAD mock-up of the system has been designed that has

provided the consortium with a visual aid to help make decisions on potential issues that the

system may occur in the future tasks of the project. The specification of using a UR5e robotic arm

has been upgraded to a UR10e robotic arm as a result of this as well as identification and solutions

to potential issues such as accounting for singularities in programming the system. Finally, a

simulated environment of the system has been developed in-situ of physical hardware system and

drivers in order to develop programming of the system on the earlier defined ‘simplified use-case’.

A private repository of code has been developed on the open-source platform GitLab containing all

elements developed to demonstrate this simplified use case. This will be used extensively as the

project develops to include the physical hardware and the implementation of a ROS middleware

which will allow for a simple transition from the simulated environment.

The result of this initial integration effort has provided the TraceBOT project with an element of

confidence that we are progressing sufficiently for a hardware integration phase for Milestone 2.

We will use these results to begin the full mechanical design process including detailing,

procurement of major items and planning of assembly of an initial physical system. The

development of the skills in the Simplified Use Case will be built upon further and this will

eventually be extended to development of skills for a full use case specification as required for

TraceBOT.

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

21

D6.1 ROS Middleware Mock-Up

6 Annexes

6.1 Annex A
Snapshot of the TraceBOT Gitlab area, showing all code developed in the project centralised in a

single location.

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

22

D6.1 ROS Middleware Mock-Up

6.2 Annex B
Table of videos

Link to video playlist: TraceBOT D6.1 - YouTube

Video 1 - Simplified Use-Case

Video 2 - Pickup of object in simulated environment

Video 3 - Digital Twin Functionality

N.B. The videos above are to provide an initial demonstration of some of the intended separate

functionalities that have been developed and tested. Some irregularities may be presented but

this is acceptable here as we are not looking to demonstrate a complete functionality at this stage.

https://www.youtube.com/playlist?list=PLWmZxrszLjCTxSPjcNBm7xZVsiB9zADol

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

23

D6.1 ROS Middleware Mock-Up

6.3 Annex C
Table of figures

Figure 1: Graphical Representation of the Simplified Use and the respective responsibilities for

each Partner ... 7

Figure 2: Software architecture developed using the online in-Browser Flowchart creator draw.io.

This version of the architecture shows some example skills for a given TraceBOT process and how

the process ultimately connects to the Camera Nodes, digital twin .. 10

Figure 3: Initial CAD Visualisations of the TraceBOT workstation ... 12

Figure 4: Visual Comparison between UR5e (left) and UR10e (right) Robot Arms 12

Figure 5: Visual Comparison between UR16e (left) and UR10e (right) Robot Arms 13

Figure 6: Reach Comparison between UR5e Robot Arm (red sphere) and UR10e Robot Arm (yellow

sphere) ... 13

Figure 7: Illustration of UR arms mounted on an independent mount oriented at an angle of 45° to

the workstation surface. The camera location has been adjusted to provide a better field of view

for using a single camera. Later discussions will include detailed investigation optimising visual

perception strategies. ... 14

Figure 8 TraceBOT in RViz/MoveIt ... 14

Figure 9 TraceBOT in Gazebo .. 14

Figure 10: TraceBOT Digital Twin .. 15

https://tecnalia365.sharepoint.com/sites/t.extranet/sp087602/Shared%20Documents/Deliverables/D6.1/TraceBot-D6.1-ROS%20Middleware%20Mock-Up.docx#_Toc89070983
https://tecnalia365.sharepoint.com/sites/t.extranet/sp087602/Shared%20Documents/Deliverables/D6.1/TraceBot-D6.1-ROS%20Middleware%20Mock-Up.docx#_Toc89070984

TraceBOT receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

24

D6.1 ROS Middleware Mock-Up

7 References
No references required

