
Traceable Robotic Handling of Sterile Medical Products

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

Traceability framework for

laboratory automation

Deliverable 4.1

Deliverable Title D4.1 Traceability framework for laboratory automation

Deliverable Lead: Technische Universität Wien (TUW)

Related Work Package: WP4: Traceability Framework

Related Task(s): T4.1: Create the Traceability Framework based on Digital Twin,
T4.2: Tactile task verification, T4.3: Visual task verification,
T4.4: Functional task verification

Author(s): Markus Vincze (TUW), Jean-Baptiste Weibel (TUW), Patrick
Mania (UOB), Franklin Kenghagho Kenfack (UOB), Michael
Neumann (UOB), Frank Vial (CEA), Anthony Remazeilles (TECN)

Dissemination Level: Public

Due Submission Date: 28/2/2022

Actual Submission: 28/2/2022

Project Number 101017089

Instrument: Research and innovation action

Start Date of Project: 1.1.2021

Duration: 51 months

Abstract

This deliverable describes the TraceBot approach to create the

traceability framework for laboratory automation. It outlines

the fully functional first version of the framework and

architecture and gives a first verification example in one of the

modalities using visual verification of the canister pose.

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

2

D4.1 Traceability framework for laboratory automation

Versioning and Contribution History

Version Date Modified by Modification reason

v.01 09.02.2022 Jean-Baptiste Weibel (TUW) First version

v.02 11.2.2022 Franck Vial (CEA) CEA input

v.03 11.2.2022 Patrick Mania (UoB) UoB input

v.04 15.2.2022 Markus Vincze (TUW) Table, summary, first proofread

v.05 17.2.2022 Patrick Mania (UoB) First version check

v.06 18.2.2022 Anthony Remazeilles (TECN) Second proofread

v.07 22.2.2022 Markus Vincze (TUW) Final updates

v.08 23.2.2022 Patrick Mania, Franklin

Kenghagho Kenfack, Michael

Neumann (UoB)

Final updates

v.09 25.2.2022 Anthony Remazeilles (TECN) Final proofread

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

3

D4.1 Traceability framework for laboratory automation

Table of Contents

Versioning and Contribution History ... 2

Table of Contents ... 3

1 Executive Summary .. 4

2 Introduction ... 5

3 Traceability Framework ... 6

3.1 Overview ... 6

3.2 Data flow in the system .. 8

3.2.1 Flow between the process and the Tracer .. 8

3.2.2 Flow between the process and the Knowledge Infrastructure & Digital Twin 9

3.3 From traceable actions towards audit trails ... 9

4 Tactile, Visual and Functional Verification ... 13

4.1 Tactile Task Verification .. 14

4.2 Visual Task Verification ... 17

4.2.1 State-of-the-Art Visual Verification.. 18

4.2.2 Visual Verification in the context of the TraceBot project .. 19

4.3 Functional Task Verification ... 20

5 Example Task Verification ... 23

5.1 Canister Pose Estimation ... 23

5.2 Visual Task Verification ... 24

6 Deviations from the workplan .. 26

7 Conclusion ... 27

8 References ... 28

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

4

D4.1 Traceability framework for laboratory automation

1 Executive Summary

To comply with regulations in the field of laboratory automation, the goal of the TraceBot project is

to put in place a traceability framework that can log all relevant data for creating an audit trail. To

achieve this, we propose a set of verification methods across modalities to guarantee that the process

is executed properly and that the data supporting the execution by the robot and documenting what

has happened is also logged.

The traceability framework serves the primary purpose of implementing a systematic way to capture

any operation or action conducted by the robotic system. To do so, we replaced standard actions by

Traceable Actions in the action execution process. These traceable components automatically gather

and send their input and output (i.e. goal, feedback and result) onto a specific and unique canal. This

allows to automatically keep track of the process structure but also the relevant subsymbolic data and

generally the sensor data. In addition, the Traceable Actions can trigger a memory episode in the

KnowRob system. The combination of both stores all the symbolic and subsymbolic information of

the process executed to enable inspection. That data is the base of the audit trail, which is generalized

as a Narrative-Enabled Episodic Memory (NEEM). NEEMs can be meaningfully queried by humans

during inspection answering questions directly such that humans do not need to meticulously inspect

all sensor data to understand the success or failure of any action taken by the robot.

The development of a set of verification or checking actions using visual and tactile sensing, but also

functional considerations thanks to the knowledge infrastructure also guarantee not only that the

execution is going as expected but also that all that information will be traced, as such verification

steps are also implemented using Traceable Actions.

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

5

D4.1 Traceability framework for laboratory automation

2 Introduction

This document aims to describe the structure of the traceability framework developed for the TraceBot

project. Its purpose is to produce a meaningful audit trail adapted to the regulatory constraints of

laboratory automation, and specifically, sterility testing, which is the use case that the TraceBot

project focuses on.

Traceability consists in both the collection of all the data relevant to the process, and its presentation

in a meaningful and usable way to spot and understand failures. The consortium therefore focused in

developing tools that enable the automatic collection of all the data used during the process execution

and its presentation in a meaningful format. The verification steps are essential in such a regulated

domain as sterility testing. To obtain traces of what the robot is actually doing, we propose to use three

modalities of verification: tactile, visual, and functional verification. The different modalities are used

to verify the correct execution of the process according to the needs in different steps of the robot

assembly process. Since these steps are also traced, this guarantees the inclusion of any important

data into the final audit trail.

The document proceeds as follows. The traceability framework is presented in Section 3, the different

verification modalities in Section 4 and finally Section 5 presents a first visual verification applied to

a simple use case, the detection of the canister.

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

6

D4.1 Traceability framework for laboratory automation

3 Traceability Framework

To achieve traceability in the context of the TraceBot project, we designed a framework that enables

the automation of the specified testing use cases while also considering the required information flow

and interpretation mechanisms necessary to generate a regulatory-proof audit trail. This architecture

respects the typical distributed nature of modern robotic systems, integrates the novel modalities for

verification and allows to generate structured trails for task executions. In the following sections, we

highlight the core communication schema and central components required for the Traceability

aspect.

3.1 Overview

The concept of traceability in the TraceBot project is realized by creating the system ability of a level

of “self-awareness” during its task execution. At any time, the robot is able to check whether the task

was completed according to the specifications it was given, and keeps all the information necessary

for a human to later analyse the process execution.

Every task is subdivided in a sequence of actions. We distinguish two types of actions:

1. Process actions: the perception or manipulation action to carry out one step in the assembly

process of the sterility kit. To ensure that these steps are executed correctly, there will be

means of verification. We use the verification to detect failures and enables to recover and

correct the operations to realise objective 4 (safe and failure-resistant operation).

2. Checking actions: is an additional action that needs to be introduced into the normal assembly

process due to the regulatory requirements of the medical domain. The checking actions

contribute to realise Objective 1 for creating traceability to allow understanding of

manipulation actions such that the robot is able to describe semantically what it is handling

and to determine success or failure of the action.

Note that in the context of this Deliverable, we use the term “action” to describe the robot behaviour.

As commented in D6.1 and D1.1 [10,11], any behaviour of the robot, or action, is technically

encapsulated as skill, for modularity and distributivity purposes. On a practical perspective, these

skills are implemented as ROS actions. We refer here to action for these behaviour components, as

the concept of traceability could be generalized to any actions, outside of a skill framework.

In terms of sequencing these actions, there is a clearly defined sequence of process sections, where a

checking action may additionally follow the process action to verify that an assembly step has been

correctly performed. The checking action is included whenever it is necessary to comply to the

regulatory requirement for creating the audit trail.

To realise that both, process and checking action, are traced, which is necessary to achieve the

complete audit trail, we created Traceable Actions. Since both types of actions are carried out by

the robot and its supporting sensors and equipment, the distinction is only relevant when creating the

sequence of actions. For execution, we treat all actions as Traceable Actions, see also Figure 1 below.

Thanks to the modularity of the action definition, a given action and its corresponding verifications

action can be combined into a new action. The final objective is to only use verified actions in the

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

7

D4.1 Traceability framework for laboratory automation

process definition. The verification provides a level of guarantee that the action was successful, and

the data gathered both from the action and the verification step allow a better understanding of the

process post-execution.

When scrutinising the different actions that are required in the project, we found two ways or channels

of verifying that the (traceable) action has been executed correctly (see also D1.3[12]).

1. The Digital Twin channel, where all robot (perception and manipulation) actions are

checked by comparing them to the Digital Twins' expectation. This enables a first kind of the

“self-awareness” of the robot about its actions and if they are executed as expected.

2. The interactive verification channel, where the robot actions are executed to create

“functional”, “visual” or “tactile” data feedback with the aim to verify if the task has been

executed correctly with the initial robot actions. How this verification is done is defined

when creating the action and verified directly in the process. Examples are closing the clamp

or visually verifying the locating of an object, see Figure 1 below.

Both these verification channels eventually feed into the Tracer and this enables the creation of the

audit trail.

To generate the audit trails, the architecture shown in Figure 1 is based around two key components,

the Tracer and NEEMs. One central component is the so-called Tracer, which is interconnected with

all actions that are executed in the Execution Manager. The execution of the individual actions results

in a sequence of executed Traceable Actions. This information provides a structure of the executed

(sub-)actions including their goals, feedbacks and results. The structure is important for dividing the

gathered information during the testing procedure into reasonable and referable sub steps in the audit

trail. This will for example allow the user to look into the data that has been generated during the

execution of a certain action including the execution context.

Fig. 1: Architecture of the Traceability Framework.

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

8

D4.1 Traceability framework for laboratory automation

The Tracer is retrieving this information and the metadata associated with the Traceable Actions and

combines it with our second central component, the so-called Narrative-Enabled Episodic Memories

(NEEMs). NEEMs are a comprehensive model to represent robot memories of task executions. It

allows to introspect the robot belief state of task executions at arbitrary points in time while also

providing semantic information for entities like the manipulated objects or facts about the

environment. This effectively enriches the logged trails by methods to represent and reason about

knowledge that the robot acquired during the execution of the testing procedure. NEEMs are part of

our TraceBot knowledge processing infrastructure and are integrated with state-of-the-art ontologies

[7] and the KnowRob [8] knowledge representation and processing framework. In the following

sections, we will provide more details about this knowledge-based module and also kindly refer to our

previous Deliverable 5.1 [9] which is about the conceptual and reasoning apparatus of the overall

Traceable Semantic Twin for more details about NEEMs, the Digital Twin and our knowledge

processing infrastructure.

3.2 Data flow in the system

The Tracer component developed as part of the TraceBot project is responsible for creating the final

audit trail based on the process execution. It therefore needs to keep track of every action the robot is

taking and the data justifying this action, but also the data proving the accurate execution of any given

action. Because common modern robotic software architectures for complex automation tasks are

distributing their responsibilities on a plethora of submodules, a system that enables Traceability

needs to address this multi-channel nature of the communication flowing in the system and should

allow to assert the acquired data and the execution context into audit trails. To keep track of all the

relevant information, the Tracer is directly connected to both the Execution Manager and the Digital

Twin, which can represent the robot knowledge at a given time through the concept of NEEMs.

To be able to combine the information from all subcomponents in the architecture into a single

comprehensive audit trail, every action will be wrapped into a Traceable Action. This includes control

commands like moving an arm but also verification feedback from components like the Digital Twin

or estimators for event detection based on sensor data, like for example a clamp click detection.

Wrapping the execution and feedback of subcomponents into loggable Traceable Actions allows the

system to combine a diverse set of (sub-)process feedback and verification modalities and generate an

audit trail based on the acquired data.

3.2.1 Flow between the process and the Tracer

The data flowing from the Execution Manager is logged by the Tracer using Traceable Actions

(every input, output and feedback of every Action is kept track of automatically). The notion of

Traceable Action is implemented as a wrapper around an Action, enabling the automatic transmission

of information from the Execution Manager to the Tracer component. In ROS terms, for any action

executed, the goal, feedback and result are automatically collected and sent to the Tracer through a

single topic. An ID is attached to every specific message. Each message also keeps track of the ID of

its parent Action to allow the reconstruction of the entire tree of action executions.

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

9

D4.1 Traceability framework for laboratory automation

An interesting point of the implementation choice we made, using a wrapper, is that this logging

functionality does not require any additional work from the component developer, as it is

automatically handled through the wrapper, independently of the interface of the action defined, as

long as it is defined as a Traceable Action.

This structure allows for a complete reconstruction of the process execution structure. It also

helps distinguish between messages even if they arrive out of order because of network bottleneck,

and enables the execution of parallel Traceable Actions while guaranteeing a correct structure in the

final trail. The Tracer collects all information and is then able to create a unique trail of information.

The Tracer also saves the information regularly during execution guaranteeing that as little data as

possible is lost in case of a software issue, a situation in which a valid audit trail is of particular

importance. The entire information gathered by the Tracer for the entire process is currently saved as

structured data in the JSON format. This is done to make the information easy to parse and format

according to the final needs.

3.2.2 Flow between the process and the Knowledge Infrastructure & Digital Twin

At the beginning of the plan execution, an episode is started by the Tracer. Afterwards, similar

to the way the actions’ input and output are kept track of, whenever an action goal or result is prepared

to be traced, a corresponding query is generated by the Tracer for the KnowRob system, triggering a

memory episode and asserting the acquired information. Queries have a fixed structure based on their

type, such as asserting skills, object detection or events. The information which is required by the

query is grounded in the ontology. After the episode is finished it is possible to extract the knowledge

with queries. This allows us to enhance the audit trail with semantic information. Example questions

used for the audit trail, could be the timeline of executed actions, highlighting events such as click

detection, the robot configuration at a specific substep in the process or images of skill results and

verification tasks.

The Tracer is also connected to the Digital Twin to record the system knowledge about itself

during the execution of different tasks. The DT is a provider for the sub-symbolic robot belief state,

through physically simulating the state of the world based on the robot perception. If the robot

releases a grasped object, the robot has to perceive the object to assert its pose. By continuously

simulating the world state, it is possible to get an expected pose of the object. This expected pose can

then be compared to the actual pose of the object in order to verify the result of the action execution.

These methods are also wrapped into individual Traceable Actions and can therefore get logged

automatically to the audit trail.

3.3 From traceable actions towards audit trails

The very reason of tracing actions is the production of audit trails. NEEMs stands for Narrative-

enabled Episodic Memories. They actually encode chronological traces of activities at a symbolic (i.e.,

semantic) as well as at a sub-symbolic level. At the symbolic level also known as NEEM narrative, the

story of the ongoing activity is collected including for instance annotations of scene objects (i.e.,

spatial relations, classes, colours, shapes) and robot actions (action types, transitions, events),

whereas the sub-symbolic description also known as NEEM experience encompasses sensor data such

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

10

D4.1 Traceability framework for laboratory automation

as entities’ trajectories, poses, images, etc. In this project, NEEMs constitute the foundation of audit

trails which themselves are chronological sets of records providing evidences that the processes were

compliant with medical sterility test regulations. Once the process traces from different components

of the system have been collected, they will be integrated into NEEMs. Figure 2 illustrates the NEEM

of a kit mounting process.

Fig. 2: NEEM of a kit mounting process.

Beyond substituting the concept of audit trail by definition and systematizing it, NEEMs are grounded

in a sufficiently large ontology of the robot world, which in turn embeds more semantics in NEEMs

and enables therefore a better understanding of what happened during the process. The Socio-

physical Model of Activities (SOMA) is an ontological modelling approach for autonomous robotic

agents performing everyday manipulation activities. It tries to catch the social as well as the physical

context of activities. Note that SOMA targets generic manipulation activities though recent works have

been focusing on specializing it for kitchen-related activities. In this project, the SOMA ontology is

extended with medical sterility testing-specific concepts.

Concretely, the ontology will encode common knowledge about TraceBot objects such as canisters,

tubes, needles, pumps, the properties or attributes of such objects such as the colour, material, shape,

volume, location, 3D models but also the relations (e.g., spatial, compositional) among these objects.

This information would then allow for instance to reason about plausible and feasible states of objects

while interacting with them, which will then enable decision making and failure detection. Given the

common spatial relations among the components of the pump, one might detect a failure if the

description from the NEEMs does not match the common sense. Note that the ontology is also

intended to encode knowledge about actions such as their temporal dependency (i.e., pouring

precedes opening), but also their pre- and post-conditions. Reasoning on such knowledge and NEEMs

would allow for instance to detect action failures. That is, the effects of an action, such as described in

the NEEMs, do not match the description in the ontology. Figure 3 highlights some preliminary works

in the work package 5 on the extension of SOMA for TraceBot. This is a screenshot of the TraceBot

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

11

D4.1 Traceability framework for laboratory automation

ontology from the ontology visualizer “Protégé". As you can see on the top left corner of the image,

the ontology extends SOMA and captures TraceBot-specific concepts such as sterility kits, canister,

pump, which actually extend super-concepts in SOMA (e.g., Canister extends container, medical

canister extends canister). Moreover, the relationships among these concepts such as aggregation are

shown (e.g., Bottle has a lid).

Fig. 3: Extension of the broad SOMA ontology to the TraceBot domain.

Once the NEEMs have been recorded, one should be able to access it in order to know how the process

went and if there were failures. One could just focus on consulting the recorded data. However, it will

be very tedious not only in time but also semantics, which is only difficultly and directly accessible by

humans. For this reason, we are also developing a sufficiently rich query language that allows either

robots or humans to quickly access the content of NEEMs. For instance, queries such as “what action

happened after action X?”, “what is the state of object X after action Y?”, “How does the scene look

like after action X?” can be issued to the reasoning system being developed in work package 5. The

concepts of NEEMs, query language, reasoning and ontology have been sufficiently described in D5.1

[9], which is the first deliverable of the work package 5 and can be accessed for more information. The

Figure 4 below illustrates the visual access of a NEEM of the execution of TraceBot’s simplified use

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

12

D4.1 Traceability framework for laboratory automation

case, which is about grasping the canister and inserting it in the drain tray. As you can see from the

bottom right corner of the image, a query is issued to the reasoning engine to extract all the trajectories

for the grasp-moving actions of a canister, which are then subsequently shown or replayed. This can

be used by a human auditor to attest that a specific action where successfully performed.

Fig. 4: Visual access of NEEMs through reasoning query.

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

13

D4.1 Traceability framework for laboratory automation

4 Tactile, Visual and Functional Verification

The traceability objective cannot be completely addressed if the robot is not equipped with means to

verify the good execution of it process. Therefore, aside the implementation of the traceability

framework, TraceBot aims at developing a set of operations which purpose is to confirm through

sensing and acting that the environment state is as expected.

To actually verify the robot actions, three modalities are proposed following the tasks T4.2 to T4.4.

This section covers these different modalities and their use toward meaningful verification: Tactile

Task Verification in Section 4.1, Visual Task Verification in Section 4.2, and Functional Task

Verification in Section 4.3.

An overview of the steps of the assembly process of the sterility kit is given in Table 1 below. It indicates

the task, what objects are handled, a key challenge to automate the step, if one or two robot arms will

be necessary to complete the task, the necessary perception and an excerpt of the verification tasks.

Please also refer to D1.3 [12] and the verification process using acceptance tests (see Sections 3 and 4

in D1.3).

Table 1: Steps of the process steps for the sterility kit.

Tasks
Objects to be

handled
Challenge Arms

Necessary

Perception
Verification

1
Manual Preparation

Equipment set

up

Scene

understanding
1-2 locate all items

Model in Digital

Twin

2.1

Kit unpacking – Open

Pack
Pack, Tyvek-foil

Flexible

material
2

locate pull-tab

top corner
foil removed

2.2

Kit unpacking – Remove

Kit
SteriKit

Flexible

connected parts
1-2

locate grasp

point
all parts present

3.1

Kit mounting - Fit

Canister To Drain
canister (2)

Click, entangle

tubing, small

tolerances

1
locate top of

canister, seat…

Check relative

pose

3.2

Kit mounting – Insert

Tube Into Pump
tubes, pump

Flexible

material
2 locate tube pull at tube

4.1

Needle preparation –

Remove Needle Cap

needle set (of

sterility kit)
Small, force 2

locate cap

element
can see needle

4.2

Needle preparation –

Insert Needle Into Bottle
needles, bottle

Perforating,

force
2 locate needle

Check force

profile

5
Wetting

Pump, canister,

plugs & bottle
Operate pump 1 - read pump data

6
Sample Transfer

Pump, canister,

plugs and vials
Vial breaking 2 locate vials

confirm brake

and emptyness

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

14

D4.1 Traceability framework for laboratory automation

7
Filter Sample

pump, canister,

plugs & bottle
Operate pump 1 - read pump data

8
Washing

pump, canister,

plugs & bottle
Operate pump 1 - read pump data

9
Media filling

pump, canister,

plugs & bottles
Operate pump 1 - read pump data

10 Cut And Close canister, cutter Cutting, force 1-2 locate clips can see cut tube

11
Finish

pump, canister

and tubes

No dropping of

fluids
1-2 locate tubes

In storage

location

12
Manual Finish

Equipment

reset

Scene

understanding
1-2 locate all items

Model in Digital

Twin

4.1 Tactile Task Verification

Tactile verification is planned for every robot grasping action and several of the assembly actions.

During grasping actions, tactile information will be utilised to confirm the object has been properly

taken. For the specific verification actions, we will use tactile feedback to capture and exploit forces

evolution while executing an operation, e.g., when inserting the needle in the septum, or when closing

the clamp.

The multi-fingered gripper developed in WP2 will include several tactile modules in order to get tactile

feedback on the object being held. Those modules will be attached to the phalanges of the fingers and

into the palm of the gripper, where the physical contacts with the object take place during grasps and

manipulations. Tactile modules are under development and will be made up of two thin sensitive layers

stacked within a same assembly. The first layer will be based on a piezo-resistive material arranged in

a matrix way, in order to capture the 2D pressure distribution over its surface. With a bandwidth of [0-

40Hz], it will measure continuous pressure as low frequency pressure variations. It will deliver spatial

and temporal information, enabling for instance to track the evolution and/or the displacement of the

contact point(s) over its surface. Figure 5 illustrates an example of the pressure distribution captured
by a preliminary piezo-resistive setup while grasping a flexible catheter made up of two parallel tubes.

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

15

D4.1 Traceability framework for laboratory automation

Fig. 5: Pressure images captured by a preliminary tactile sensors setup while grasping two

parallel flexible tubes. The sensors setup consists in two pressure sensitive matrices, each matrix

being related to one of the two fingers of the gripper. When grasped, the tubes are squeezed between

the two matrices. The color scale enables to visualize the pressure distribution captured by each of

the matrices, with red / green / blue colors respectively for high / intermediate / low pressure values.

The second sensitive layer will consist in a piezoelectric patch, enabling to capture mechanical

vibrations up to 4 kHz. The objective here is to sense high frequency variations of the contact to be

complementary to the piezo-resistive measurements. As vibrations spread within materials, a single

piezo-electric cell seems sufficient and leads advantageously to a simpler and to more compact

electronics than a multi-cell arrangement would.

Tactile sensing can be used to check the smooth running of operations for different use-cases. Since

the tactile sensing can detect the contact with the different phalanges and the palm of the gripper, it

enables to check that the gripper parts that need to be touching the object are actually in contact with

it. It can be used to check whether the Digital Twin belief about the object status is correct or not,

while grabbing or manipulating the object. A full or partial loss of contact with the object during the

manipulation may also occur for different reasons. For example:

• if the gripper is not applying the right pressure
• if the gripping pose is not correct
• if obstacles in the environment bump into the object

This loss of contact can be reported through the tactile sensors. In practice, the motion controller could

generate a reference contact array for each manipulation requiring a grasp. This array would specify

for each part of the gripper whether a contact is expected or not. The tactile outputs would then be

continuously compared to those expectations, and if wrong, a warning would be raised.

This verification can be refined by exploiting the spatial information provided by the tactile sensor(s).

The centroid of the pressure will be computed in order to locate the equivalent contact point on the

sensor surface, and by extension, on the phalanx or on the palm. This information may be particularly

helpful when grabbing small or thin objects for further precise manipulation. As a use case example,

we can mention the needle handling. If our plan is to grab the needle between the distal phalanges

before removing its guard, a poor positioning of the needle within the phalanges would affect the

success of the removal operation. More than the “yes/no” contacts expectation, the reference array

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

16

D4.1 Traceability framework for laboratory automation

could then indicate the valid area of the sensor(s) in which the contact(s) should take place, whenever

relevant according to the use case. The verification step here would consist in comparing the contacts

location estimated from tactile measurements to the reference array content. A warning would be raised

when different, enabling at the same time to identify on which phalanx the deviation has occurred.

Real-time slippage detection may also be applied in order to prevent the loss of the object. Each

phalanx may locally detect a change in contact point, or a vibration caused by friction with the object.

Sometimes these are intended effects, for example when reorienting the object in hand. But sometimes,

it may report the unattended slippage of the object in hand during a firm grasp. If detected quickly

enough, the system can compensate to prevent the loss of the object. The slippage detection may also

be used for example to verify that the tube is well inserted inside the pump. After insertion, the robot

could apply a moderated grip on the tube between two of its fingers and slightly pull the tube

longitudinally. If the tube is well attached to the pump, the applied movement should encounter a

resistance and the tactile sensor attached to the phalanges should detect a slippage, crossing a threshold

to be defined. If not, then the tube moves with respect to the pump and is not well inserted.

Furthermore, the piezoelectric sensor may help to detect specific vibration patterns such as the click

during the closing of the clip. To illustrate this, first closing clip experiments have been conducted

with a Panda Robot’s gripper equipped with a piezoelectric sensor (see Figure 6).

Fig. 6: Preliminary clip closing test on a piezoelectric sensor.

The spectrum of the vibrations measured by the sensor is specific and repeatable over those

preliminary tests. We have verified that the motion of the hand during clip transportation did not

yield a similar pattern. This means that we can use the spectrum of the vibrations in order to detect

this specific event without confusing this with normal motion. This monitoring could be activated in

specific phases of the manipulation to reduce any potential false positives.

Finally, using the force sensing measurements from the gripper and/or the robotic arm actuators, it is

possible to detect some events such as the insertion of the needle in the bottle. When inserting the

needle, first there is a resistance due to the contact with the bottle stopper. Then as the stopper is

punctured, the resistance drops, and it may be possible to use force sensors to detect this particular

pattern. If the needle hits a rigid part, the resistance to the motion will never drop. On the contrary, the

robot should measure no significant force while the needle remains in the air.

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

17

D4.1 Traceability framework for laboratory automation

4.2 Visual Task Verification

Visual task verification generally refers to checking whether at a certain location an object is detected

and in a specific pose. This verification does not only use visual input from RGB-D sensors, but also

uses the Digital Twin physics simulation capability to check, whether the proposed visually observed

pose of the object makes sense given the context such as supporting plane and other objects. We

envision this type of visual verification for checks whether objects are in the correct location and pose

after a manipulation action, like inserting the canister in the tray or locating the needle before it is

inserted into the septum.

Visual verification uses the following approach: any time the pose of an object is estimated by the

vision component of the system, it is compared to the belief of the system about where that object is

supposed to be. This provides a level of self-awareness during the task execution. The Digital Twin

based on its previous knowledge, the manipulation that was performed, and the physics simulator it

contains compare the perceived pose and the estimated pose. The physical plausibility (e.g., collision,

static stability, scene dynamics) of a given pose is also considered using the physics simulator.

Beside this straightforward verification, visual verification can go further and evaluate how well its

prediction using an abstracted representation fits with the low-level sensor data.

Figure 7 illustrates a visual verification score: it compares the observed depth and normal images to

their rendered counterparts under the estimated pose. We first detail the state-of-the-art methods for

visual verification, and then details how they will be adapted to suit the project needs.

Fig. 7: Visualization of the verification score. The darker the color, the worse the alignment [1,2,4].

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

18

D4.1 Traceability framework for laboratory automation

4.2.1 State-of-the-Art Visual Verification

In [1], we apply rendering-based verification to determine the visually best pose hypothesis among a

set of physically plausible rest poses of the observed object. As illustrated in Figure 8, an initial rest

pose is adapted by aligning the segmented object in the observation to the object rendered under this

initial guess. The overall highest scoring guess is returned as pose estimate. Note that this approach

assumes a single rigid object to statically rest on a planar surface.

Fig. 8: Verification of physically plausible rest poses. The hypothesis with the object lying on its side

(top) is visually less plausible (i.e., lower verification score) than the upright hypothesis (bottom

row) [1].

This rendering-based verification is used in [2] to 1) supervise iterative refinement and 2) guide a

regret minimizing hypothesis selection. Additionally, we alternate refinement and physics simulation

steps to improve initialization and to avoid divergence in either substep. Considering multiple objects,

we iteratively refine multiple object hypotheses and add the best hypothesis to the simulated scene

used for the following object.

Finally, we proposed to consider point cloud-based refinement as a reinforcement learning task in

[3]. By additionally rewarding physically plausible (non-intersecting, statically stable) scene

configurations [4], implausible object poses may be resolved as shown in Figure 9. Again, rendering-

based verification is used to supervise the iterative refinement process and to determine the visually

most plausible (intermediary) pose, visualized in Figure 10.

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

19

D4.1 Traceability framework for laboratory automation

Fig. 9: Initial pose (left) of the target object (gray) with intersecting points (red). After refinement

(right), intersections are resolved, and all objects statically rest upon a support [4].

Fig. 10: Visualization of the verification score over multiple refinement iterations. The observation

(left) is compared to the rendered objects with their estimated pose (right). The resulting score is

visualised in the lower line (more yellow indicates better alignment).

4.2.2 Visual Verification in the context of the TraceBot project

As described in the previous section, state-of-the-art visual verification methods have been developed

for non-transparent rigid objects. Transparent objects are very challenging for depth sensors, which

generally deliver little valid data for those objects. This impacts the verification score described above

as it relies on the observed surface normals. It further impacts the refinement steps described that

also need depth observation.

The physical plausibility described in the previous section is also challenged by the objects considered

in the TraceBot as they are not all rigid objects and include fluids.

These two aspects prevent a direct application of state-of-the-art methods in the context of the project.

Building upon our previous work and addressing the gap in the visual domain, we will include more

powerful rendering approaches, such as physics-based renderers [5] or ones exploiting ray tracing

features (e.g., provided by the Unity game engine), and consider alternative representation such as

[6] to reduce the domain gap and enable visual verification of refractive/reflective objects.

Both the color and depth modality degrade given refractive/reflective objects. Still, contours/edges

may be extracted from color images. We will explore existing contour-based refinement methods to

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

20

D4.1 Traceability framework for laboratory automation

substitute for depth-based ones and additionally propose to leverage an inverse rendering pipeline to

solve for pose (instead of material). By translating both the real reference and the rendered image to

the contour/edge domain, we expect to bridge the domain gap.

While CAD models are available for many objects in TraceBot, we do not know their material (e.g.,

defined by the reflectance properties using standard models such as BRDF - bidirectional

reflectance distribution function) to render them realistically. However, this is necessary for

accurate synthetic dataset generation and for rendering-based verification. We recorded views of the

real object using a robotic arm on a known textured background and use those as target views in an

inverse rendering pipeline [5] that optimizes for properties such as the index of refraction (IOR) or

the color tint of the material, see also Figure 11. This enables an automatic estimation of the material

parameters based on views of the object, making the approach easier to adapt for new objects and less

dependent on expert knowledge.

Fig. 11: Views of the canister are recorded using a robotic arm, simplifying manual annotation for

ground-truth pose and segmentation (left). A material for the CAD model is manually created in

Blender to recreate the refraction of the reference image in simulation (right). This step will be

automated.

4.3 Functional Task Verification

An application of the knowledge infrastructure (i.e., NEEMs, ontology, query language, reasoning

engine) presented in the section 3.3 is the functional verification of TraceBot processes. Functional

verification consists foremost in computing the discrepancies between the expected and the actual

effects of an action in order to deduce whether or not the equipment in the sterility testing cell (i.e.,

lab) operates properly. But it might also refer to checking whether or not an action was feasible in a

certain context (pre-conditions) and that such action was performed successfully (post-conditions).

For instance, how can one functionally verify that the canister is properly inserted into the drain tray,

or that the needle is properly inserted into the bottle cap. For the canister insertion verification, a

specific verification action is performed such as shaking the canister. If it does not fall then, one can

infer that the canister was properly inserted. If starting the pump causes the circulation of liquid

solutions through the tube, then this might be a hint to deduce that the needle insertion was successful

and that the needle operates properly. A Bottle has no defectuous hole if the volume of the solution

inside it does not unexpectedly change over time or if there is no leakage. The tube operates properly

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

21

D4.1 Traceability framework for laboratory automation

if the solution circulates through it without problem. That is, the solution is pulled from the source

bottle at an expected rate and filled into the destination bottle at the same expected rate. Otherwise,

this might be considered as a signal that the tube is somewhere obstructed.

Recent preliminary works have been focusing on verifying the feasibility of actions depending on the

context of the ongoing processes. The question is whether or not it is possible to perform a certain

action within a given context. In order to achieve this, an initial ontology of action (i.e., preconditions

and postconditions) was provided and the object ontology was extended with affordances (e.g.,

graspable, posable, posee, etc). In order to model the concepts of pre- and postconditions, we

introduce the concepts of states and transitions. A state describes the actual world and can be

represented by a set of predicates, known as fluents, and whose values change over time. For instance,

Graspable(canister1) is true if the canister is not grasped yet and can be grasped, but becomes false

either on one of the above conditions. Then, a state can be represented as set of fluents such as

On(canister1, table1), Graspable(canister1) which means that the canister1 is on the table1 and can be

grasped. Action preconditions are then represented as specific states in which the execution of the

action is feasible. The concept of transition allows to model the effects of an action within a specific

world state. The expected resulting state can be regarded as the postconditions of the action. Formally,

a transition is a function that takes as parameters a given state and an action, then returns the

resulting state after performing the actions. For instance, after opening a bottle, it should be visible,

graspable and close, but after performing the action, the bottle should be at least open. Then, given a

context such as the canister is detected and not grasped, the drain tray is empty, one could infer that

the grasp of the canister is feasible as well as its insertion in the drain tray. After declaring the canister

as non-detectable in the process context, our reasoning engine could infer that these actions are no

more feasible. The Figure 12 below illustrates this feasibility verification.

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

22

D4.1 Traceability framework for laboratory automation

Fig. 12: Enriching ontology for action feasibility verification.

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

23

D4.1 Traceability framework for laboratory automation

5 Example Task Verification

In this Section, we describe our implementation of a first visual verification for the canister pose

estimation case.

5.1 Canister Pose Estimation

As commented in Section 4.2, the pose estimation of transparent objects is a challenging target that

we are still working on and expect to report first results soon. As a contingency plan, we prepared a

pipeline adapted to an opaque canister created by spraying out the original canister. This allows us to

directly evaluate our previous work [1, 2, 3, 4] in the TraceBot pipeline and provide partners with

working vision methods to investigate other downstream tasks without requiring extensive

computational power.

We use plane pop-out as a simple object segmentation approach that requires no training. Point Pair

Features (PPF) computed from the segmented point cloud and the known object model can be used

to estimate the pose while only requiring minor preprocessing of the 3D model but no intensive

training. We combine this with our rendering-based verification score to determine the best pose

hypothesis, as illustrated in Figure 13.

Fig. 13: A spray-painted canister is observed by a depth camera. The supporting plane is segmented,

and the object pose is estimated using the remaining points. For each pose hypothesis, we compute

a verification score based on the object rendered under the estimated pose. The highest scoring pose

closely aligns the observation and the corresponding object model.

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

24

D4.1 Traceability framework for laboratory automation

5.2 Visual Task Verification

In an experimentation illustrated on Figure 14, we compared the visual verification process for the

spray-painted and the original transparent canister in isolation and in the tray (one condition per

row). For each condition, three different object locations are considered, and we show for each the

top-3 PPF hypothesis. Note that these results are without pose refinement.

For the isolated transparent canister, the sparse depth information may still be sufficient to yield

graspable object poses. The condition of the spray-painted canister in the tray indicates the need for

considering object interactions. Finally, the transparent canister in the tray is confused with the tray

itself. Aligning the model to the dense depth information corresponding to the tray yields a higher

score (i.e., is better supported by observational evidence) than aligning it to the sparse depth of the

transparent canister. In addition to considering object interactions, this case motivates the use of

further observational modalities for hypothesis generation and verification, such as color.

Fig. 14: The top-3 PPF hypotheses for three different views (left to right) and the corresponding per-

pixel verification score (brighter color indicates better alignment). We compare results for (top to

bottom) the spray-painted canister and the original transparent canister in isolation as well as both

versions in the tray.

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

25

D4.1 Traceability framework for laboratory automation

A first trial on the robot was executed on the Toyota HSR at TU Wien. The idea was to check, given

the reasonable accuracy of object pose estimation, if the robot would be able to take and place the

canister in the tray. The task was to grasp the canister from a table and transfer it to the tray on

another table, see Figure 15. The visual methods are simplified und use a marker next to the tray

location. The robot is not an industrial arm but rather a service robot with less accuracy than an

industrial arm. However, it was possible to take the canister and place it in the tray with an accuracy

of a few millimetres. This test is very useful, because we can now integrate the methods for object pose

estimation and will be able to make tests in Vienna before making the methods available to the project

partners. Certainly, TU Wien will also assist with integration at the other partner’s sites, in particular

with the gripper at partner CEA and the integration with partner Astech.

Fig. 15: Example manipulation using visual detection of the canister and the tray. Performed with

the Toyota HSR robot at TU Wien.

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

26

D4.1 Traceability framework for laboratory automation

6 Deviations from the workplan

No notable deviation from the workplan was detected so far.

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

27

D4.1 Traceability framework for laboratory automation

7 Conclusion

This document details to inner workings of the traceability framework developed for the TraceBot. On

one side, Traceable Actions ensure the correct logging of the data generated by the process, both

symbolic and subsymbolic, and NEEMs enable efficient querying of that data after the process ended.

In combination, TraceBot processes can generate a useful audit trail that can provide information

relevant to successes and failures and a structured way to search through them.

On the other side, a set of verification actions have been designed and will be implemented throughout

the project relying on different modalities. These verifications actions serve as checks for the correct

execution of the process and, because they are logged in the same way as any other action, guarantee

that the final audit will contain all information relevant for verification.

Those two aspects help us achieve a more meaningful level of traceability and accountability for

automated workflow even in highly regulated environments such a sterility testing, the main use case

considered in TraceBot.

In Table 1 we presented a first overview of the process sequence and the involved actions, challenges

and verification actions. Future work is to go into more detail for every step in this process and

propose detailed approaches on how to tackle the goal of verifying every robot action.

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

28

D4.1 Traceability framework for laboratory automation

8 References

[1] Bauer, D., Patten, T., & Vincze, M. (2020). Scene Explanation through Verification of Stable Object

Poses. ICRA 2020 Workshop on Perception, Action, Learning: From Metric-Semantic Scene

Understanding to High-level Task Execution.

[2] Bauer, D., Patten, T., & Vincze, M. (2020). VeREFINE: Integrating Object Pose Verification with

Iterative Physics-guided Refinement. IEEE Robotics and Automation Letters (RA-L), 5(3), 4289-

4296.

[3] Bauer, D., Patten, T., & Vincze, M. (2021). ReAgent: Point Cloud Registration using Imitation and

Reinforcement Learning. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

14586-14594.

[4] Bauer, D., Patten, T., & Vincze, M. (2022). SporeAgent: Reinforced Scene-level Plausibility for

Object Pose Refinement. IEEE Winter Conference on Applications of Computer Vision (WACV), 654-

662.

[5] Nimier-David, M., Vicini, D., Zeltner, T., & Jakob, W. (2019). Mitsuba 2: A retargetable forward

and inverse renderer. ACM Transactions on Graphics (TOG), 38(6), 1-17.

[6] Chen, G., Han, K., & Wong, K. Y. K. (2018). Tom-net: Learning transparent object matting from a

single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) (pp. 9233-9241).

[7] Beßler, D., Porzel R., Pomarlan, M. , Vyas, A., Höffner, S., Beetz, M., Malaka, R., & Bateman, J.

(2021) Foundations of the Socio-physical Model of Activities (SOMA) for Autonomous Robotic

Agents. In Formal Ontology in Information Systems - Proceedings of the 12th International

Conference, FOIS 2021, Bozen-Bolzano, Italy, September 13-16, 2021, IOS Press.

[8] Tenorth, M., & Beetz, M. (2013). KnowRob: A knowledge processing infrastructure for cognition-

enabled robots. The International Journal of Robotics Research, 32(5), 566-590.

[9] Beetz, M. (2022). Definition of the conceptual and reasoning framework and semantic models.

Deliverable 5.1 of the EU-funded TraceBot Project (grant agreement No 101017089).

[10] Rosidi, S., & Gordon, B. (2021). ROS Middleware mock-up. Deliverable 6.1 of the EU-funded

TraceBot Project (grant agreement No 101017089).

[11] Gordon, B., & Rosidi S. (2022). System architecture. Deliverable 1.1 of the EU-funded TraceBot

Project (grant agreement No 101017089).

[12] Cichon, T., & Coulon, C.-H. (2022). Verification plan. Deliverable 1.3 of the EU-funded TraceBot

Project (grant agreement No 101017089).

