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D4.1 Traceability framework for laboratory automation 

1 Executive Summary 
 

To comply with regulations in the field of laboratory automation, the goal of the TraceBot project is 

to put in place a traceability framework that can log all relevant data for creating an audit trail. To 

achieve this, we propose a set of verification methods across modalities to guarantee that the process 

is executed properly and that the data supporting the execution by the robot and documenting what 

has happened is also logged. 

The traceability framework serves the primary purpose of implementing a systematic way to capture 

any operation or action conducted by the robotic system. To do so, we replaced standard actions by 

Traceable Actions in the action execution process. These traceable components automatically gather 

and send their input and output (i.e. goal, feedback and result) onto a specific and unique canal. This 

allows to automatically keep track of the process structure but also the relevant subsymbolic data and 

generally the sensor data. In addition, the Traceable Actions can trigger a memory episode in the 

KnowRob system. The combination of both stores all the symbolic and subsymbolic information of 

the process executed to enable inspection. That data is the base of the audit trail, which is generalized 

as a Narrative-Enabled Episodic Memory (NEEM). NEEMs can be meaningfully queried by humans 

during inspection answering questions directly such that humans do not need to meticulously inspect 

all sensor data to understand the success or failure of any action taken by the robot. 

The development of a set of verification or checking actions using visual and tactile sensing, but also 

functional considerations thanks to the knowledge infrastructure also guarantee not only that the 

execution is going as expected but also that all that information will be traced, as such verification 

steps are also implemented using Traceable Actions. 
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2 Introduction 
 

This document aims to describe the structure of the traceability framework developed for the TraceBot 

project. Its purpose is to produce a meaningful audit trail adapted to the regulatory constraints of 

laboratory automation, and specifically, sterility testing, which is the use case that the TraceBot 

project focuses on. 

Traceability consists in both the collection of all the data relevant to the process, and its presentation 

in a meaningful and usable way to spot and understand failures. The consortium therefore focused in 

developing tools that enable the automatic collection of all the data used during the process execution 

and its presentation in a meaningful format. The verification steps are essential in such a regulated 

domain as sterility testing. To obtain traces of what the robot is actually doing, we propose to use three 

modalities of verification: tactile, visual, and functional verification. The different modalities are used 

to verify the correct execution of the process according to the needs in different steps of the robot 

assembly process. Since these steps are also traced, this guarantees the inclusion of any important 

data into the final audit trail. 

The document proceeds as follows. The traceability framework is presented in Section 3, the different 

verification modalities in Section 4 and finally Section 5 presents a first visual verification applied to 

a simple use case, the detection of the canister. 
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D4.1 Traceability framework for laboratory automation 

3 Traceability Framework  
 

To achieve traceability in the context of the TraceBot project, we designed a framework that enables 

the automation of the specified testing use cases while also considering the required information flow 

and interpretation mechanisms necessary to generate a regulatory-proof audit trail. This architecture 

respects the typical distributed nature of modern robotic systems, integrates the novel modalities for 

verification and allows to generate structured trails for task executions. In the following sections, we 

highlight the core communication schema and central components required for the Traceability 

aspect. 

 

3.1 Overview 
 

The concept of traceability in the TraceBot project is realized by creating the system ability of a level 

of “self-awareness” during its task execution. At any time, the robot is able to check whether the task 

was completed according to the specifications it was given, and keeps all the information necessary 

for a human to later analyse the process execution.  

Every task is subdivided in a sequence of actions. We distinguish two types of actions:  

1. Process actions: the perception or manipulation action to carry out one step in the assembly 

process of the sterility kit. To ensure that these steps are executed correctly, there will be 

means of verification. We use the verification to detect failures and enables to recover and 

correct the operations to realise objective 4 (safe and failure-resistant operation).  

2. Checking actions: is an additional action that needs to be introduced into the normal assembly 

process due to the regulatory requirements of the medical domain. The checking actions 

contribute to realise Objective 1 for creating traceability to allow understanding of 

manipulation actions such that the robot is able to describe semantically what it is handling 

and to determine success or failure of the action.  

Note that in the context of this Deliverable, we use the term “action” to describe the robot behaviour. 

As commented in D6.1 and D1.1 [10,11], any behaviour of the robot, or action, is technically 

encapsulated as skill, for modularity and distributivity purposes. On a practical perspective, these 

skills are implemented as ROS actions. We refer here to action for these behaviour components, as 

the concept of traceability could be generalized to any actions, outside of a skill framework. 

In terms of sequencing these actions, there is a clearly defined sequence of process sections, where a 

checking action may additionally follow the process action to verify that an assembly step has been 

correctly performed. The checking action is included whenever it is necessary to comply to the 

regulatory requirement for creating the audit trail.  

To realise that both, process and checking action, are traced, which is necessary to achieve the 

complete audit trail, we created Traceable Actions. Since both types of actions are carried out by 

the robot and its supporting sensors and equipment, the distinction is only relevant when creating the 

sequence of actions. For execution, we treat all actions as Traceable Actions, see also Figure 1 below.  

Thanks to the modularity of the action definition, a given action and its corresponding verifications 

action can be combined into a new action. The final objective is to only use verified actions in the 
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D4.1 Traceability framework for laboratory automation 

process definition. The verification provides a level of guarantee that the action was successful, and 

the data gathered both from the action and the verification step allow a better understanding of the 

process post-execution. 

When scrutinising the different actions that are required in the project, we found two ways or channels 

of verifying that the (traceable) action has been executed correctly (see also D1.3[12]).  

1. The Digital Twin channel, where all robot (perception and manipulation) actions are 

checked by comparing them to the Digital Twins' expectation. This enables a first kind of the 

“self-awareness” of the robot about its actions and if they are executed as expected. 

2. The interactive verification channel, where the robot actions are executed to create 

“functional”, “visual” or “tactile” data feedback with the aim to verify if the task has been 

executed correctly with the initial robot actions. How this verification is done is defined 

when creating the action and verified directly in the process. Examples are closing the clamp 

or visually verifying the locating of an object, see Figure 1 below. 

Both these verification channels eventually feed into the Tracer and this enables the creation of the 

audit trail.  

To generate the audit trails, the architecture shown in Figure 1 is based around two key components, 

the Tracer and NEEMs. One central component is the so-called Tracer, which is interconnected with 

all actions that are executed in the Execution Manager. The execution of the individual actions results 

in a sequence of executed Traceable Actions. This information provides a structure of the executed 

(sub-)actions including their goals, feedbacks and results. The structure is important for dividing the 

gathered information during the testing procedure into reasonable and referable sub steps in the audit 

trail. This will for example allow the user to look into the data that has been generated during the 

execution of a certain action including the execution context. 

 

Fig. 1: Architecture of the Traceability Framework. 
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D4.1 Traceability framework for laboratory automation 

The Tracer is retrieving this information and the metadata associated with the Traceable Actions and 

combines it with our second central component, the so-called Narrative-Enabled Episodic Memories 

(NEEMs). NEEMs are a comprehensive model to represent robot memories of task executions. It 

allows to introspect the robot belief state of task executions at arbitrary points in time while also 

providing semantic information for entities like the manipulated objects or facts about the 

environment. This effectively enriches the logged trails by methods to represent and reason about 

knowledge that the robot acquired during the execution of the testing procedure. NEEMs are part of 

our TraceBot knowledge processing infrastructure and are integrated with state-of-the-art ontologies 

[7] and the KnowRob [8] knowledge representation and processing framework. In the following 

sections, we will provide more details about this knowledge-based module and also kindly refer to our 

previous Deliverable 5.1 [9] which is about the conceptual and reasoning apparatus of the overall 

Traceable Semantic Twin for more details about NEEMs, the Digital Twin and our knowledge 

processing infrastructure. 

 

3.2 Data flow in the system 
 

The Tracer component developed as part of the TraceBot project is responsible for creating the final 

audit trail based on the process execution. It therefore needs to keep track of every action the robot is 

taking and the data justifying this action, but also the data proving the accurate execution of any given 

action. Because common modern robotic software architectures for complex automation tasks are 

distributing their responsibilities on a plethora of submodules, a system that enables Traceability 

needs to address this multi-channel nature of the communication flowing in the system and should 

allow to assert the acquired data and the execution context into audit trails. To keep track of all the 

relevant information, the Tracer is directly connected to both the Execution Manager and the Digital 

Twin, which can represent the robot knowledge at a given time through the concept of NEEMs.  

To be able to combine the information from all subcomponents in the architecture into a single 

comprehensive audit trail, every action will be wrapped into a Traceable Action. This includes control 

commands like moving an arm but also verification feedback from components like the Digital Twin 

or estimators for event detection based on sensor data, like for example a clamp click detection. 

Wrapping the execution and feedback of subcomponents into loggable Traceable Actions allows the 

system to combine a diverse set of (sub-)process feedback and verification modalities and generate an 

audit trail based on the acquired data. 

 

3.2.1 Flow between the process and the Tracer 
 

The data flowing from the Execution Manager is logged by the Tracer using Traceable Actions 

(every input, output and feedback of every Action is kept track of automatically). The notion of 

Traceable Action is implemented as a wrapper around an Action, enabling the automatic transmission 

of information from the Execution Manager to the Tracer component. In ROS terms, for any action 

executed, the goal, feedback and result are automatically collected and sent to the Tracer through a 

single topic. An ID is attached to every specific message. Each message also keeps track of the ID of 

its parent Action to allow the reconstruction of the entire tree of action executions.  
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D4.1 Traceability framework for laboratory automation 

An interesting point of the implementation choice we made, using a wrapper, is that this logging 

functionality does not require any additional work from the component developer, as it is 

automatically handled through the wrapper, independently of the interface of the action defined, as 

long as it is defined as a Traceable Action.  

This structure allows for a complete reconstruction of the process execution structure. It also 

helps distinguish between messages even if they arrive out of order because of network bottleneck, 

and enables the execution of parallel Traceable Actions while guaranteeing a correct structure in the 

final trail. The Tracer collects all information and is then able to create a unique trail of information. 

The Tracer also saves the information regularly during execution guaranteeing that as little data as 

possible is lost in case of a software issue, a situation in which a valid audit trail is of particular 

importance. The entire information gathered by the Tracer for the entire process is currently saved as 

structured data in the JSON format. This is done to make the information easy to parse and format 

according to the final needs. 

 

3.2.2 Flow between the process and the Knowledge Infrastructure & Digital Twin 
 

At the beginning of the plan execution, an episode is started by the Tracer. Afterwards, similar 

to the way the actions’ input and output are kept track of, whenever an action goal or result is prepared 

to be traced, a corresponding query is generated by the Tracer for the KnowRob system, triggering a 

memory episode and asserting the acquired information. Queries have a fixed structure based on their 

type, such as asserting skills, object detection or events. The information which is required by the 

query is grounded in the ontology. After the episode is finished it is possible to extract the knowledge 

with queries. This allows us to enhance the audit trail with semantic information. Example questions 

used for the audit trail, could be the timeline of executed actions, highlighting events such as click 

detection, the robot configuration at a specific substep in the process or images of skill results and 

verification tasks. 

The Tracer is also connected to the Digital Twin to record the system knowledge about itself 

during the execution of different tasks. The DT is a provider for the sub-symbolic robot belief state, 

through physically simulating the state of the world based on the robot perception. If the robot 

releases a grasped object, the robot has to perceive the object to assert its pose. By continuously 

simulating the world state, it is possible to get an expected pose of the object. This expected pose can 

then be compared to the actual pose of the object in order to verify the result of the action execution. 

These methods are also wrapped into individual Traceable Actions and can therefore get logged 

automatically to the audit trail. 

 

3.3 From traceable actions towards audit trails 
 

The very reason of tracing actions is the production of audit trails. NEEMs stands for Narrative-

enabled Episodic Memories. They actually encode chronological traces of activities at a symbolic (i.e., 

semantic) as well as at a sub-symbolic level. At the symbolic level also known as NEEM narrative, the 

story of the ongoing activity is collected including for instance annotations of scene objects (i.e., 

spatial relations, classes, colours, shapes) and robot actions (action types, transitions, events), 

whereas the sub-symbolic description also known as NEEM experience encompasses sensor data such 
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D4.1 Traceability framework for laboratory automation 

as entities’ trajectories, poses, images, etc. In this project, NEEMs constitute the foundation of audit 

trails which themselves are chronological sets of records providing evidences that the processes were 

compliant with medical sterility test regulations. Once the process traces from different components 

of the system have been collected, they will be integrated into NEEMs. Figure 2 illustrates the NEEM 

of a kit mounting process. 

  

  

Fig. 2: NEEM of a kit mounting process. 

  

Beyond substituting the concept of audit trail by definition and systematizing it, NEEMs are grounded 

in a sufficiently large ontology of the robot world, which in turn embeds more semantics in NEEMs 

and enables therefore a better understanding of what happened during the process. The Socio-

physical Model of Activities (SOMA) is an ontological modelling approach for autonomous robotic 

agents performing everyday manipulation activities. It tries to catch the social as well as the physical 

context of activities. Note that SOMA targets generic manipulation activities though recent works have 

been focusing on specializing it for kitchen-related activities. In this project, the SOMA ontology is 

extended with medical sterility testing-specific concepts.  

Concretely, the ontology will encode common knowledge about TraceBot objects such as canisters, 

tubes, needles, pumps, the properties or attributes of such objects such as the colour, material, shape, 

volume, location, 3D models but also the relations (e.g., spatial, compositional) among these objects. 

This information would then allow for instance to reason about plausible and feasible states of objects 

while interacting with them, which will then enable decision making and failure detection. Given the 

common spatial relations among the components of the pump, one might detect a failure if the 

description from the NEEMs does not match the common sense. Note that the ontology is also 

intended to encode knowledge about actions such as their temporal dependency (i.e., pouring 

precedes opening), but also their pre- and post-conditions. Reasoning on such knowledge and NEEMs 

would allow for instance to detect action failures. That is, the effects of an action, such as described in 

the NEEMs, do not match the description in the ontology. Figure 3 highlights some preliminary works 

in the work package 5 on the extension of SOMA for TraceBot. This is a screenshot of the TraceBot 
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ontology from the ontology visualizer “Protégé". As you can see on the top left corner of the image, 

the ontology extends SOMA and captures TraceBot-specific concepts such as sterility kits, canister, 

pump, which actually extend super-concepts in SOMA (e.g., Canister extends container, medical 

canister extends canister). Moreover, the relationships among these concepts such as aggregation are 

shown (e.g., Bottle has a lid). 

  

  

Fig. 3: Extension of the broad SOMA ontology to the TraceBot domain. 

  

Once the NEEMs have been recorded, one should be able to access it in order to know how the process 

went and if there were failures. One could just focus on consulting the recorded data. However, it will 

be very tedious not only in time but also semantics, which is only difficultly and directly accessible by 

humans. For this reason, we are also developing a sufficiently rich query language that allows either 

robots or humans to quickly access the content of NEEMs. For instance, queries such as “what action 

happened after action X?”, “what is the state of object X after action Y?”, “How does the scene look 

like after action X?” can be issued to the reasoning system being developed in work package 5. The 

concepts of NEEMs, query language, reasoning and ontology have been sufficiently described in D5.1 

[9], which is the first deliverable of the work package 5 and can be accessed for more information. The 

Figure 4  below illustrates the visual access of a NEEM of the execution of TraceBot’s simplified use 
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D4.1 Traceability framework for laboratory automation 

case, which is about grasping the canister and inserting it in the drain tray. As you can see from the 

bottom right corner of the image, a query is issued to the reasoning engine to extract all the trajectories 

for the grasp-moving actions of a canister, which are then subsequently shown or replayed. This can 

be used by a human auditor to attest that a specific action where successfully performed. 

 

  

Fig. 4: Visual access of NEEMs through reasoning query. 
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D4.1 Traceability framework for laboratory automation 

4 Tactile, Visual and Functional Verification  
 

The traceability objective cannot be completely addressed if the robot is not equipped with means to 

verify the good execution of it process. Therefore, aside the implementation of the traceability 

framework, TraceBot aims at developing a set of operations which purpose is to confirm through 

sensing and acting that the environment state is as expected.  

To actually verify the robot actions, three modalities are proposed following the tasks T4.2 to T4.4. 

This section covers these different modalities and their use toward meaningful verification: Tactile 

Task Verification in Section 4.1, Visual Task Verification in Section 4.2, and Functional Task 

Verification in Section 4.3.  

An overview of the steps of the assembly process of the sterility kit is given in Table 1 below. It indicates 

the task, what objects are handled, a key challenge to automate the step, if one or two robot arms will 

be necessary to complete the task, the necessary perception and an excerpt of the verification tasks. 

Please also refer to D1.3 [12] and the verification process using acceptance tests (see Sections 3 and 4 

in D1.3). 

 

Table 1: Steps of the process steps for the sterility kit.  

# Tasks 
Objects to be 

handled 
Challenge Arms 

Necessary 

Perception 
Verification 

1 
Manual Preparation 

Equipment set 

up 

Scene 

understanding 
1-2 locate all items 

Model in Digital 

Twin 

2.1 

Kit unpacking – Open 

Pack 
Pack, Tyvek-foil 

Flexible 

material 
2 

locate pull-tab 

top corner 
foil removed 

2.2 

Kit unpacking – Remove 

Kit 
SteriKit 

Flexible 

connected parts 
1-2 

locate grasp 

point 
all parts present 

3.1 

Kit mounting - Fit 

Canister To Drain 
canister (2) 

Click, entangle 

tubing, small 

tolerances 

1 
locate top of 

canister, seat… 

Check relative 

pose 

3.2 

Kit mounting – Insert 

Tube Into Pump 
tubes, pump 

Flexible 

material 
2 locate tube pull at tube 

4.1 

Needle preparation – 

Remove Needle Cap 

needle set (of 

sterility kit) 
Small, force 2 

locate cap 

element 
can see needle 

4.2 

Needle preparation – 

Insert Needle Into Bottle 
needles, bottle 

Perforating, 

force 
2 locate needle 

Check force 

profile 

5 
Wetting 

Pump, canister, 

plugs & bottle 
Operate pump 1 - read pump data 

6 
Sample Transfer 

Pump, canister, 

plugs and vials 
Vial breaking 2 locate vials 

confirm brake 

and emptyness 
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D4.1 Traceability framework for laboratory automation 

7 
Filter Sample 

pump, canister, 

plugs & bottle 
Operate pump 1 - read pump data 

8 
Washing 

pump, canister, 

plugs & bottle 
Operate pump 1 - read pump data 

9 
Media filling 

pump, canister, 

plugs & bottles 
Operate pump 1 - read pump data 

10 Cut And Close canister, cutter Cutting, force 1-2 locate clips can see cut tube 

11 
Finish 

pump, canister 

and tubes 

No dropping of 

fluids 
1-2 locate tubes 

In storage 

location 

12 
Manual Finish 

Equipment 

reset 

Scene 

understanding 
1-2 locate all items 

Model in Digital 

Twin 

 

4.1 Tactile Task Verification 
 

Tactile verification is planned for every robot grasping action and several of the assembly actions. 

During grasping actions, tactile information will be utilised to confirm the object has been properly 

taken. For the specific verification actions, we will use tactile feedback to capture and exploit forces 

evolution while executing an operation, e.g., when inserting the needle in the septum, or when closing 

the clamp.  

 

The multi-fingered gripper developed in WP2 will include several tactile modules in order to get tactile 

feedback on the object being held. Those modules will be attached to the phalanges of the fingers and 

into the palm of the gripper, where the physical contacts with the object take place during grasps and 

manipulations. Tactile modules are under development and will be made up of two thin sensitive layers 

stacked within a same assembly. The first layer will be based on a piezo-resistive material arranged in 

a matrix way, in order to capture the 2D pressure distribution over its surface. With a bandwidth of [0-

40Hz], it will measure continuous pressure as low frequency pressure variations. It will deliver spatial 

and temporal information, enabling for instance to track the evolution and/or the displacement of the 

contact point(s) over its surface. Figure 5 illustrates an example of the pressure distribution captured 
by a preliminary piezo-resistive setup while grasping a flexible catheter made up of two parallel tubes.  
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D4.1 Traceability framework for laboratory automation 

 
Fig. 5: Pressure images captured by a preliminary tactile sensors setup while grasping two 

parallel flexible tubes. The sensors setup consists in two pressure sensitive matrices, each matrix 

being related to one of the two fingers of the gripper. When grasped, the tubes are squeezed between 

the two matrices. The color scale enables to visualize the pressure distribution captured by each of 

the matrices, with red / green / blue colors respectively for high / intermediate / low pressure values. 

 

The second sensitive layer will consist in a piezoelectric patch, enabling to capture mechanical 

vibrations up to 4 kHz. The objective here is to sense high frequency variations of the contact to be 

complementary to the piezo-resistive measurements. As vibrations spread within materials, a single 

piezo-electric cell seems sufficient and leads advantageously to a simpler and to more compact 

electronics than a multi-cell arrangement would. 

 

Tactile sensing can be used to check the smooth running of operations for different use-cases. Since 

the tactile sensing can detect the contact with the different phalanges and the palm of the gripper, it 

enables to check that the gripper parts that need to be touching the object are actually in contact with 

it. It can be used to check whether the Digital Twin belief about the object status is correct or not, 

while grabbing or manipulating the object. A full or partial loss of contact with the object during the 

manipulation may also occur for different reasons. For example: 

• if the gripper is not applying the right pressure 
• if the gripping pose is not correct 
• if obstacles in the environment bump into the object 

This loss of contact can be reported through the tactile sensors. In practice, the motion controller could 

generate a reference contact array for each manipulation requiring a grasp. This array would specify 

for each part of the gripper whether a contact is expected or not. The tactile outputs would then be 

continuously compared to those expectations, and if wrong, a warning would be raised. 

 

This verification can be refined by exploiting the spatial information provided by the tactile sensor(s). 

The centroid of the pressure will be computed in order to locate the equivalent contact point on the 

sensor surface, and by extension, on the phalanx or on the palm. This information may be particularly 

helpful when grabbing small or thin objects for further precise manipulation. As a use case example, 

we can mention the needle handling. If our plan is to grab the needle between the distal phalanges 

before removing its guard, a poor positioning of the needle within the phalanges would affect the 

success of the removal operation. More than the “yes/no” contacts expectation, the reference array 
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could then indicate the valid area of the sensor(s) in which the contact(s) should take place, whenever 

relevant according to the use case. The verification step here would consist in comparing the contacts 

location estimated from tactile measurements to the reference array content. A warning would be raised 

when different, enabling at the same time to identify on which phalanx the deviation has occurred. 

 

Real-time slippage detection may also be applied in order to prevent the loss of the object. Each 

phalanx may locally detect a change in contact point, or a vibration caused by friction with the object. 

Sometimes these are intended effects, for example when reorienting the object in hand. But sometimes, 

it may report the unattended slippage of the object in hand during a firm grasp. If detected quickly 

enough, the system can compensate to prevent the loss of the object. The slippage detection may also 

be used for example to verify that the tube is well inserted inside the pump. After insertion, the robot 

could apply a moderated grip on the tube between two of its fingers and slightly pull the tube 

longitudinally. If the tube is well attached to the pump, the applied movement should encounter a 

resistance and the tactile sensor attached to the phalanges should detect a slippage, crossing a threshold 

to be defined. If not, then the tube moves with respect to the pump and is not well inserted. 

 
Furthermore, the piezoelectric sensor may help to detect specific vibration patterns such as the click 

during the closing of the clip. To illustrate this, first closing clip experiments have been conducted 

with a Panda Robot’s gripper equipped with a piezoelectric sensor (see Figure 6).  

 

Fig. 6: Preliminary clip closing test on a piezoelectric sensor. 

 

The spectrum of the vibrations measured by the sensor is specific and repeatable over those 

preliminary tests. We have verified that the motion of the hand during clip transportation did not 

yield a similar pattern. This means that we can use the spectrum of the vibrations in order to detect 

this specific event without confusing this with normal motion. This monitoring could be activated in 

specific phases of the manipulation to reduce any potential false positives.  

Finally, using the force sensing measurements from the gripper and/or the robotic arm actuators, it is 

possible to detect some events such as the insertion of the needle in the bottle. When inserting the 

needle, first there is a resistance due to the contact with the bottle stopper. Then as the stopper is 

punctured, the resistance drops, and it may be possible to use force sensors to detect this particular 

pattern. If the needle hits a rigid part, the resistance to the motion will never drop. On the contrary, the 

robot should measure no significant force while the needle remains in the air. 
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4.2 Visual Task Verification 
 

Visual task verification generally refers to checking whether at a certain location an object is detected 

and in a specific pose. This verification does not only use visual input from RGB-D sensors, but also 

uses the Digital Twin physics simulation capability to check, whether the proposed visually observed 

pose of the object makes sense given the context such as supporting plane and other objects. We 

envision this type of visual verification for checks whether objects are in the correct location and pose 

after a manipulation action, like inserting the canister in the tray or locating the needle before it is 

inserted into the septum. 

Visual verification uses the following approach: any time the pose of an object is estimated by the 

vision component of the system, it is compared to the belief of the system about where that object is 

supposed to be. This provides a level of self-awareness during the task execution. The Digital Twin 

based on its previous knowledge, the manipulation that was performed, and the physics simulator it 

contains compare the perceived pose and the estimated pose. The physical plausibility (e.g., collision, 

static stability, scene dynamics) of a given pose is also considered using the physics simulator. 

Beside this straightforward verification, visual verification can go further and evaluate how well its 

prediction using an abstracted representation fits with the low-level sensor data.  

Figure 7 illustrates a visual verification score: it compares the observed depth and normal images to 

their rendered counterparts under the estimated pose. We first detail the state-of-the-art methods for 

visual verification, and then details how they will be adapted to suit the project needs. 

 

 

Fig. 7: Visualization of the verification score. The darker the color, the worse the alignment [1,2,4]. 
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4.2.1 State-of-the-Art Visual Verification 
 

In [1], we apply rendering-based verification to determine the visually best pose hypothesis among a 

set of physically plausible rest poses of the observed object. As illustrated in Figure 8, an initial rest 

pose is adapted by aligning the segmented object in the observation to the object rendered under this 

initial guess. The overall highest scoring guess is returned as pose estimate. Note that this approach 

assumes a single rigid object to statically rest on a planar surface. 

 

 

Fig. 8: Verification of physically plausible rest poses. The hypothesis with the object lying on its side 

(top) is visually less plausible (i.e., lower verification score) than the upright hypothesis (bottom 

row) [1]. 

 

This rendering-based verification is used in [2] to 1) supervise iterative refinement and 2) guide a 

regret minimizing hypothesis selection. Additionally, we alternate refinement and physics simulation 

steps to improve initialization and to avoid divergence in either substep. Considering multiple objects, 

we iteratively refine multiple object hypotheses and add the best hypothesis to the simulated scene 

used for the following object. 

Finally, we proposed to consider point cloud-based refinement as a reinforcement learning task in 

[3]. By additionally rewarding physically plausible (non-intersecting, statically stable) scene 

configurations [4], implausible object poses may be resolved as shown in Figure 9. Again, rendering-

based verification is used to supervise the iterative refinement process and to determine the visually 

most plausible (intermediary) pose, visualized in Figure 10. 
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Fig. 9: Initial pose (left) of the target object (gray) with intersecting points (red). After refinement 

(right), intersections are resolved, and all objects statically rest upon a support [4]. 

 

 

Fig. 10: Visualization of the verification score over multiple refinement iterations. The observation 

(left) is compared to the rendered objects with their estimated pose (right). The resulting score is 

visualised in the lower line (more yellow indicates better alignment). 

 

4.2.2 Visual Verification in the context of the TraceBot project 

 

As described in the previous section, state-of-the-art visual verification methods have been developed 

for non-transparent rigid objects. Transparent objects are very challenging for depth sensors, which 

generally deliver little valid data for those objects. This impacts the verification score described above 

as it relies on the observed surface normals. It further impacts the refinement steps described that 

also need depth observation. 

The physical plausibility described in the previous section is also challenged by the objects considered 

in the TraceBot as they are not all rigid objects and include fluids. 

These two aspects prevent a direct application of state-of-the-art methods in the context of the project. 

Building upon our previous work and addressing the gap in the visual domain, we will include more 

powerful rendering approaches, such as physics-based renderers [5] or ones exploiting ray tracing 

features (e.g., provided by the Unity game engine), and consider alternative representation such as 

[6] to reduce the domain gap and enable visual verification of refractive/reflective objects.  

Both the color and depth modality degrade given refractive/reflective objects. Still, contours/edges 

may be extracted from color images. We will explore existing contour-based refinement methods to 
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substitute for depth-based ones and additionally propose to leverage an inverse rendering pipeline to 

solve for pose (instead of material). By translating both the real reference and the rendered image to 

the contour/edge domain, we expect to bridge the domain gap. 

While CAD models are available for many objects in TraceBot, we do not know their material (e.g., 

defined by the reflectance properties using standard models such as BRDF - bidirectional 

reflectance distribution function) to render them realistically. However, this is necessary for 

accurate synthetic dataset generation and for rendering-based verification. We recorded views of the 

real object using a robotic arm on a known textured background and use those as target views in an 

inverse rendering pipeline [5] that optimizes for properties such as the index of refraction (IOR) or 

the color tint of the material, see also Figure 11. This enables an automatic estimation of the material 

parameters based on views of the object, making the approach easier to adapt for new objects and less 

dependent on expert knowledge.  

 

 

Fig. 11: Views of the canister are recorded using a robotic arm, simplifying manual annotation for 

ground-truth pose and segmentation (left). A material for the CAD model is manually created in 

Blender to recreate the refraction of the reference image in simulation (right). This step will be 

automated. 

 

4.3 Functional Task Verification 
 

An application of the knowledge infrastructure (i.e., NEEMs, ontology, query language, reasoning 

engine) presented in the section 3.3 is the functional verification of TraceBot processes. Functional 

verification consists foremost in computing the discrepancies between the expected and the actual 

effects of an action in order to deduce whether or not the equipment in the sterility testing cell (i.e., 

lab) operates properly. But it might also refer to checking whether or not an action was feasible in a 

certain context (pre-conditions) and that such action was performed successfully (post-conditions). 

For instance, how can one functionally verify that the canister is properly inserted into the drain tray, 

or that the needle is properly inserted into the bottle cap. For the canister insertion verification, a 

specific verification action is performed such as shaking the canister. If it does not fall then, one can 

infer that the canister was properly inserted. If starting the pump causes the circulation of liquid 

solutions through the tube, then this might be a hint to deduce that the needle insertion was successful 

and that the needle operates properly. A Bottle has no defectuous hole if the volume of the solution 

inside it does not unexpectedly change over time or if there is no leakage. The tube operates properly 
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if the solution circulates through it without problem. That is, the solution is pulled from the source 

bottle at an expected rate and filled into the destination bottle at the same expected rate. Otherwise, 

this might be considered as a signal that the tube is somewhere obstructed. 

Recent preliminary works have been focusing on verifying the feasibility of actions depending on the 

context of the ongoing processes. The question is whether or not it is possible to perform a certain 

action within a given context. In order to achieve this, an initial ontology of action (i.e., preconditions 

and postconditions) was provided and the object ontology was extended with affordances (e.g., 

graspable, posable, posee, etc). In order to model the concepts of pre- and postconditions, we 

introduce the concepts of states and transitions. A state describes the actual world and can be 

represented by a set of predicates, known as fluents, and whose values change over time. For instance, 

Graspable(canister1) is true if the canister is not grasped yet and can be grasped, but becomes false 

either on one of the above conditions. Then, a state can be represented as set of fluents such as 

On(canister1, table1), Graspable(canister1) which means that the canister1 is on the table1 and can be 

grasped. Action preconditions are then represented as specific states in which the execution of the 

action is feasible. The concept of transition allows to model the effects of an action within a specific 

world state. The expected resulting state can be regarded as the postconditions of the action. Formally, 

a transition is a function that takes as parameters a given state and an action, then returns the 

resulting state after performing the actions. For instance, after opening a bottle, it should be visible, 

graspable and close, but after performing the action, the bottle should be at least open. Then, given a 

context such as the canister is detected and not grasped, the drain tray is empty, one could infer that 

the grasp of the canister is feasible as well as its insertion in the drain tray. After declaring the canister 

as non-detectable in the process context, our reasoning engine could infer that these actions are no 

more feasible. The Figure 12 below illustrates this feasibility verification. 
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Fig. 12: Enriching ontology for action feasibility verification. 
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5 Example Task Verification  
 

In this Section, we describe our implementation of a first visual verification for the canister pose 

estimation case. 

 

5.1 Canister Pose Estimation 
 

As commented in Section 4.2, the pose estimation of transparent objects is a challenging target that 

we are still working on and expect to report first results soon. As a contingency plan, we prepared a 

pipeline adapted to an opaque canister created by spraying out the original canister. This allows us to 

directly evaluate our previous work [1, 2, 3, 4] in the TraceBot pipeline and provide partners with 

working vision methods to investigate other downstream tasks without requiring extensive 

computational power.  

We use plane pop-out as a simple object segmentation approach that requires no training. Point Pair 

Features (PPF) computed from the segmented point cloud and the known object model can be used 

to estimate the pose while only requiring minor preprocessing of the 3D model but no intensive 

training. We combine this with our rendering-based verification score to determine the best pose 

hypothesis, as illustrated in Figure 13. 

 

Fig. 13: A spray-painted canister is observed by a depth camera. The supporting plane is segmented, 

and the object pose is estimated using the remaining points. For each pose hypothesis, we compute 

a verification score based on the object rendered under the estimated pose. The highest scoring pose 

closely aligns the observation and the corresponding object model. 
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5.2 Visual Task Verification 
 

In an experimentation illustrated on Figure 14, we compared the visual verification process for the 

spray-painted and the original transparent canister in isolation and in the tray (one condition per 

row). For each condition, three different object locations are considered, and we show for each the 

top-3 PPF hypothesis.  Note that these results are without pose refinement.  

For the isolated transparent canister, the sparse depth information may still be sufficient to yield 

graspable object poses. The condition of the spray-painted canister in the tray indicates the need for 

considering object interactions. Finally, the transparent canister in the tray is confused with the tray 

itself. Aligning the model to the dense depth information corresponding to the tray yields a higher 

score (i.e., is better supported by observational evidence) than aligning it to the sparse depth of the 

transparent canister. In addition to considering object interactions, this case motivates the use of 

further observational modalities for hypothesis generation and verification, such as color. 

 

 

Fig. 14: The top-3 PPF hypotheses for three different views (left to right) and the corresponding per-

pixel verification score (brighter color indicates better alignment). We compare results for (top to 

bottom) the spray-painted canister and the original transparent canister in isolation as well as both 

versions in the tray. 
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A first trial on the robot was executed on the Toyota HSR at TU Wien. The idea was to check, given 

the reasonable accuracy of object pose estimation, if the robot would be able to take and place the 

canister in the tray. The task was to grasp the canister from a table and transfer it to the tray on 

another table, see Figure 15. The visual methods are simplified und use a marker next to the tray 

location. The robot is not an industrial arm but rather a service robot with less accuracy than an 

industrial arm. However, it was possible to take the canister and place it in the tray with an accuracy 

of a few millimetres. This test is very useful, because we can now integrate the methods for object pose 

estimation and will be able to make tests in Vienna before making the methods available to the project 

partners. Certainly, TU Wien will also assist with integration at the other partner’s sites, in particular 

with the gripper at partner CEA and the integration with partner Astech.   

 

 

Fig. 15: Example manipulation using visual detection of the canister and the tray. Performed with 

the Toyota HSR robot at TU Wien. 
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6 Deviations from the workplan 
 

No notable deviation from the workplan was detected so far. 
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7 Conclusion  
 

This document details to inner workings of the traceability framework developed for the TraceBot. On 

one side, Traceable Actions ensure the correct logging of the data generated by the process, both 

symbolic and subsymbolic, and NEEMs enable efficient querying of that data after the process ended. 

In combination, TraceBot processes can generate a useful audit trail that can provide information 

relevant to successes and failures and a structured way to search through them. 

On the other side, a set of verification actions have been designed and will be implemented throughout 

the project relying on different modalities. These verifications actions serve as checks for the correct 

execution of the process and, because they are logged in the same way as any other action, guarantee 

that the final audit will contain all information relevant for verification. 

Those two aspects help us achieve a more meaningful level of traceability and accountability for 

automated workflow even in highly regulated environments such a sterility testing, the main use case 

considered in TraceBot. 

In Table 1 we presented a first overview of the process sequence and the involved actions, challenges 

and verification actions. Future work is to go into more detail for every step in this process and 

propose detailed approaches on how to tackle the goal of verifying every robot action. 
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