
Traceable Robotic Handling of Sterile Medical Products

 TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089), 2021-2025

Skill-based framework

description
Deliverable 3.1

Deliverable Title D3.1 Skill-based framework description

Deliverable Lead: TECNALIA

Related Work Package: WP3: Rapid, intuitive task programming

Related Task(s): T3.1: Skill-based framework

Author(s): Hector Herrero (TECN)

Iñigo Moreno (TECN)

Anthony Remazeilles (TECN)

Dissemination Level: Public

Due Submission Date: 28/02/2023

Actual Submission: 30/03/2023

Project Number 101017089

Instrument: Research and innovation action

Start Date of Project: 01.01.2021

Duration: 51 months

Abstract

In TraceBot project TECNALIA proposed a common development
framework, principally, for harmonizing developments and
reducing integration efforts. The proposed Skill Framework has
been shared with the partners and until now has been widely used
by many partners.

2

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

Versioning and Contribution History

Version Date Modified by Modification reason

v.01 09.02.2023 Hector Herrero (TECN) First version

v.02 10.02.2023 Anthony Remazeilles (TECN) Document overview

v.03 13.02.2023 Hector Herrero, Anthony

Remazeilles (TECN)

Ready for internal revision

V.04 15.02.2023 Julie Dumora (CEA) First internal revision

V.05 22.02.2023 Hector Herrero, Anthony

Remazeilles (TECN)

Adjustments based on revision

V.06 23.02.2023 Jean Baptiste Weibel (TUW) 2nd internal revision

V.07 24.02.2023 Hector Herrero, Anthony

Remazeilles (TECN)

Revised version ready for

submission

V.08 24.03.2023 Héctor Herrero (TECN) Public version without confidential

information

3

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

Table of Contents

Versioning and Contribution History ... 2

Table of Contents ... 3

1 Executive Summary .. 4

2 Introduction ... 5

3 Robot skills framework .. 8

3.1 Skill definition ... 8

3.1.1 TraceBot Skills .. 8

3.1.2 Skill meta-information .. 9

3.2 Process description through YAML syntax ... 11

3.2.1 Simplified Use Case process file .. 11

3.2.2 Available Flexbotics state classes .. 13

3.3 Finite State machine for execution control .. 14

4 TraceBot improvements over initial Skill Framework .. 17

4.1 State machine-based process execution.. 17

4.2 Process checker .. 17

4.3 YAML syntax for process files ... 18

4.4 TraceableAction .. 18

4.5 Meta-information .. 18

4.6 Skill framework usage in TraceBot ... 19

5 Conclusion ... 20

6 References ... 21

4

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

1 Executive Summary

The programming of advanced and complex behaviours in robotics, like in other fields, is facilitated

using frameworks of communication and abstraction. ROS is a significant step in that direction as it

provides an off-the-shelf communication mean, as well as an encapsulation of operations mechanism

through its concept of node (ROS processing unit). Nevertheless, the design of a robust, traceable and

failure-resistant robotic application requires more layers on the top of the material provided by this

framework.

We are proposing in TraceBot to use an implementation of a skill-framework to fill that gap. In such

concept a robot is considered to be provided with a set of skills, as high-level capabilities or behaviours

that can be combined to build applications. We rely on a previous implementation of Tecnalia of such

concept, which provides (i) a model of skills, (ii) an execution manager that loads, orchestrates and

monitors the good execution of the skills, and (iii) an application description format, that is used to

define a process, as a succession of skills, which is loaded by the execution manager.

The advantage of this framework is that it is fully compatible with ROS and enables developers to

implement skills using standard ROS communication interface (such as ROS actions and services).

This is of major importance in collaborative projects with various partners, as it reduces the learning

curve. Also, the hierarchical structure of the skills facilitates the encapsulation of functionalities and

their reuse in multiple applications.

Several improvements have been provided to the framework with TraceBot, in particular to cope with

the project requirements. The direct compatibility with ROS interface for skill implementation has

been consolidated and is now the main implementation mean of skills in the project. The definition

of an application, namely a process, has been completely upgraded to be based on the YAML format,

a human readable format, which is also convenient to define sub-processes that can be reused into

other applications. The execution manager has been updated to load the process as a state machine,

which opens the door for implementing non purely sequential processes (where the next actions may

depend on the outcome of the previous actions). Meta-information functionality has been integrated

into the skill definition, enabling the association of contextual information or requirements with given

skills, and opening the door to higher level reasoning. Also, the concept of skill has been upgraded to

provide a systematic traceability of the operations conducted by the robot, through the publication of

the actions configurations and outcome, which is then captured by the tracer to fill the audit trail.

The Skill framework is used to generate all implementations of the use case in TraceBot. Thanks to

the compatibility with standard ROS actions and services partner can develop their modules

(perception, verification, semantic reasoning, digital twin, arm and hand controller), and only have to

provide entry points to their component, through ROS actions and services, to enable the integration

of their component into the skill framework.

5

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

2 Introduction

Developing robotic applications is hard, in particular when each new application may be different, use

different hardware and be applied in different sectors and fields. These premises make it very difficult

to robotize new applications that have so far been carried out manually, "forcing" companies to

specialize in certain types of applications, hardware manufacturers and sectors.

A way to address this aspect consists in defining an abstraction mechanism, for decomposing a given

application into a set of actions / operations. The usage of such framework presents many advantages.

By introducing a concept of operation units, an action or a skill in our case, an application gets divided

into a set of “high-level” operations, providing an overview of the different steps to achieve. This way

it is easier to follow the activity planned, and to structure the visualization on the achievement

progress. The encapsulation enables also to hide the complexity of the underlying operations. A simple

motion to a given location may require complex environment perception and analysis, advanced path

planning and cautious motion control to react to obstacles, but at the highest level, it can be defined

as a simple “move to target”, relaxing at the highest level the need to understand all the underlying

operations. Relying on such encapsulation mechanism also promotes the modularity and reuse of the

implemented behaviours. With such frameworks, an interface contract is required to define how to

structure a skill, how to parametrize it, how to get its outcome, etc… Therefore, a given behaviour can

be seamlessly reused into another application, as long as the other application respects the generic

interface contract and the specific requirement of the behaviour to be reused. Finally, another

advantage of such abstraction scheme is that the change of a given behaviour or skill has limited

impact on the overall application, as long as the interface contract is similar. It is therefore very

beneficial for development stages as the overall application can be mounted and prepared even if all

the behaviours are not yet totally ready. Going back to the “move to target”, a very preliminary version

could be prepared, generating the motion assuming total liberty of motion, and used in early

validation. Then, when the environment-aware planner and control system is ready, it can be

seamlessly inserted in the process plan, replacing the previous basic version, without impacting the

rest of the application if the interface is the same.

The usage of ROS in robotics is definitely a significant step into that direction, as this framework

provides efficient means of encapsulating behaviours, into nodes, and transparent means of

communication, through topic, services and actions. Nevertheless, it does not provide a systematic

way to implement a complete application, as a succession of operations to be conducted, and it does

not provide the manager that would be in charge to monitor the good execution of the process, and

progressively triggers the execution of the next operation. This is why it is still relevant to build on the

top of it a high-level framework to encapsulate behaviours, define a process of operations, and

monitor its good execution.

Our proposition is responding to this need and relies on the Skill-Based Programming approach

[Björkelund2011]. Robot skills are an analogy of human skills: a human can perform a known action

in different situations without the need of re-learning how to do it. For example, for picking and

placing an object the relevant information is the object to handle and the target to place, all the other

needed information is inferred due to the prior learning and experience. The expected concept of skill

for a robotic application can be presented as a software module that allows achieving a goal being

flexible enough for adapting to various changes, such as, hardware devices, environment, locations,

etc.

6

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

Our implementation of a skill framework relies on three key components (see Figure 1):

- The core package is the Flexbotics Execution Manager. It is the engine responsible of loading

a given process description (application defined through a set of skills), and orchestrating the

progressive execution of the different skills of the plan, connecting the different input and

output (parameters that each skill may require and results that may be generated,

respectively), and configuring the skills as defined into the plan. The Execution Manager is

agnostic to the purpose of the plan, and it can therefore be used for a very diverse range of

robotic applications integrating, for example, advanced robotic manipulation tasks, computer

vision operations, robot mobility and navigation, etc.

- The implementation of the so-called skill, which is an implementation of a capability,

functionality. It can be related to perception processing, robotic motions, reasoning …. It must

be designed in a standardized way so that it can be seamlessly triggered by the Execution

Manager independently of its purpose and complexity. We took the decision to enable a direct

compatibility with the standard ROS communication tools (in particular ROS services and

actions), to reduce the knowledge required to provide skills, which is particularly relevant

when working with external partners as it shortens the learning stage.

- The definition of an application description modality, describing the succession of operations

or skills to be executed to produce the desired operation. We name it a process. The definition

of the process is a combination of skills, where the connection of the skill input and output is

defined, so that the Execution Manager knows at run-time which operation to trigger, with

which parameters. The process definition provides a hierarchical scheme: a skill can be a basic

unit (again, whatever its complexity), or a set of skills. This promotes again the reuse of

developed skills, the abstraction of an operation complexity, and the decomposition of

complex processes into a set of reusable operations. The process description is, thanks to

TraceBot, now implemented through a YAML file, which has been selected for its readability

and its ability to speed up process creation.

The rest of the document provides insight on the so-called Flexbotics skill framework (Section 3), and

the improvements developed during the Tracebot project (Section 4).

Confidential information about the implementation has been removed from this document, but is

available to the project consortium.

7

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

Figure 1 The Skill Framework is composed by three key components: Flexbotics Execution
Manager, Skills and Application Description

8

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

3 Robot skills framework

For defining and encapsulating the required robotics capabilities, the skill concept is proposed.

Having in mind the required efforts of integrating each module from different partners in different

locations, the need to define a clear interface that must be fulfilled by any of the behaviours of the

system is a crucial aspect.

In this section, the three key aspects mentioned above are described in detail: Section 3.1 introduces

the concept of skills and their integration into Tracebot, Section 3.2 is focused on presenting how a

robotic application can be modelled using YAML syntax, and Section 3.3 describes the details of the

Flexbotics Execution Manager, the orchestrator that makes it work together. Figure 1 provides a

general overview of the three main blocks of the Skill Framework.

3.1 Skill definition

The concept of skills refers to Skill Based Programming approach. Robot skills are an analogy of

human skills: a human can perform a known action in different situations without the need to re-learn

how to do it. For example, for picking and placing an object the relevant information is the object to

handle and the target to place, all the other needed information is inferred from the prior learning

and experience. The expected concept of skill for a robotic application can be presented as a software

module that allows achieving a goal while being flexible enough to adapt to various changes, such as

hardware devices, environment, locations, etc.

Despite the bibliography usually proposing a three-layer schema (primitives, skills, and tasks)

[Pedersen2016], at TraceBot, the primitive concept (atomic or symbolic units of code) is not

considered. The notion of atomic operation may be very different from one perspective to another.

Also, it requires agreeing on programming practices at a very low level, which can be problematic for

collaborative projects where partners may have quite different views on the matter. Therefore,

TraceBot skills are considered as “black-boxes” that are responsible for achieving a goal, but this does

not prevent from taking advantage of coupling skills to compose hierarchical skills. At the end, the

skills can be sequenced forming tasks, which are mapped to the Sterility Testing use case1.

To simplify the collaboration with partners, reducing the learning curve of the Flexbotics skill

framework, we promoted the implementation of skills through standard ROS actions, a compatibility

that was introduced in our skill framework.

3.1.1 TraceBot Skills

As mentioned above, a TraceBot skill can be wrapped into a ROS action server (see Figure 2). Thus,

each contributor can develop the intended behaviour inside the action call-back, as usually done in

the ROS environment. Then, for integrating the related operation as a skill in the Framework, only

the following information is required and placed in the YAML process description:

1 https://tracebot.gitlab.io/tracebot_showcase/

9

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

• Name. The desired name for the state which will wrap the action client.

• Action name: ROS path to the action.

• Action spec: ROS action goal message type

• Params: A set of pairs (key: value) with the required input parameters

• Result: Variable name where the result will be stored

In Figure 3 the YAML implementation of the action client can be seen. These blocks of code are

interpreted by the Skill Framework for constructing the robot applications (more details at Section

3.2).

Figure 2: Schema of a TraceBot skill wrapped as a ROS action server

Figure 3: Tracebot skill action client representation in YAML format

Additionally, the Skill Framework also allows integrating skills provided via ROS services, and Python

classes. Services should be used for a remote procedure call that terminates quickly, since they cannot

be pre-empted. Python skills are more intended for mathematical operations, data transformation,

quick type management, etc.

3.1.2 Skill meta-information

The structure described in the previous section is sufficient to create a skill and embed it into the

process. We nevertheless perceived the need to enhance the skill description with some contextual

information that could be used to reason about the skills themselves. This is why we studied the option

of incorporating some contextual or meta information associated to each skill.

10

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

Meta-information is understood as a set of fields that complement the specification of a skill.

Currently a meta-information file contains the following fields:

• Input Parameters

• Result

• Pre-conditions

• Hold-conditions

• Post-conditions

During the first period of TraceBot, it seemed interesting adding such meta-information directly in

the YAML process files. Consequently, the Skill Framework was enhanced with the possibility of

parsing YAML file with specific meta-information section for including the description of the skill

(using appropriate languages such as PDDL [Fox2003]). This meta-information provides information

regarding the required parameters of the skill, the preconditions to be fulfilled for being able to

execute the skill and, finally, the effect in the environment of the executed skill.

Another approach that has been also implemented is the association of meta-information to each

available skill within a separate file. This approach provides higher control and more re-usability,

allowing to be managed by independent packages, and reducing the required occurrences of the meta-

information if the skill is reused in other places. A ROS package manages the existing meta-

information supercharged skills, providing auto-discovery features (capability to automatically

identify the available skills at run time) and ROS services for accessing the meta-information. Thanks

to <export> tag of the ROS packages the skill-metainformation can be exposed, and then detected by

the skill meta-information manager. Through the mentioned services the available skills can be listed,

and their fields can be retrieved from any node of the ROS application.

One of the important aspects to keep in mind when working with skills-based programming is the

relationship of a skill with its predecessor and successor, i.e., its boundaries. It may not be enough

providing its input parameters, since the skill could be responsible of executing complex behaviours

and cause an effect in the environment; these conditions must be considered as well.

With the meta-information, a “contract” to be fulfilled can be defined: pre-conditions that must be

satisfied to allow the execution of the skill, hold-conditions to be maintained during the skill

execution, and post-conditions for setting an effect in the environment.

The candidate information for pre/hold/post conditions could be very extensive, thus as an initial

approach the following fields has been designed:

• ROS communication requirements:
o Required services

o Required topics

• Resource status

o Robot status

o Gripper status

This information can be accessed via ROS services, and as a further work, could be managed by the

process checker (see Section 4.2) in order to validate a process file before execution.

11

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

The usage and configuration of a skill could be difficult for a non-expert. The parameter info can

provide a guideline for an easier usage of the skills, allowing defining the type of the parameter (float,

int, string, etc.), a default value, an informational field, and even a set of possible pre-defined values.

This information can be accessed via ROS services, being especially useful not only for the users, but

also for developing more generic graphical user interfaces.

It is relevant to notice that such meta-information can be connected to the semantic information

employed by the cognitive programming interface developed in task 3.6 to ease the programming of

applications by the end-user, as well as to the ontology behind the KnowRob semantic framework

developed in WP5. We are still analysing whether it is better to host the whole semantic information

aside the skill description, or instead an identifier pointing to the related description in the complete

ontology. In any case, the skill framework is able to cope with both implementation choice.

3.2 Process description through YAML syntax

A robotic application can be divided into steps, or more concretely, tasks. The philosophy behind the

Skill-Based Programming consists on mapping the application steps with a hierarchy of skills that are

able to accomplish tasks.

As previously mentioned, we implemented the functionality to define a process of skills through a

YAML file, which required structure is now described.

3.2.1 Simplified Use Case process file

To illustrate the structure of such process file, we take as example the Simplified Use Case, selected

for first stages of component integration at TraceBot, in particular during the first year of the project2.

As illustrated by Figure 4, a succession of YAML tags are used. Each block of !Include tag refers to a

set of skills included in another YAML file (increasing modularity and development reuse). Figure 5

presents the content of one of these included processes. The !Python tag indicates the usage of a

TraceableAction (more details at Section 4.4). This refers to a ROS action that is executed in a remote

action server, allowing the distribution of responsibilities and reducing the integration efforts.

Another important item is the communication between the skills. The input parameters and the

generated results must be specified in the YAML process file. Each skill in the process file has a

params field for defining the required parameters and, on the other hand, a result field for setting a

variable name where the result will be stored.

At run-time, the Execution Manager is loading this process, and map it to a SMACH state machine3.

To visualize generated behaviours, the smach_viewer4 package can be used. It allows representing the

2 https://www.youtube.com/watch?v=xAN3_wyX2xQ Illustration of the canister insertion process, as used for
the first Milestone of the project.
3 http://wiki.ros.org/smach
4 http://wiki.ros.org/smach_viewer

https://www.youtube.com/watch?v=xAN3_wyX2xQ

12

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

process state machine generated by the Skill Framework, which creates different levels of hierarchy

(for each !Include tag). In the Figure 6 three levels of hierarchy can be observed.

Figure 4: Simplified Use Case YAML implementation of the process. The root definition is
mainly referencing subprocesses defined in other YAML files

Figure 5: Detail of the detect_canister.yaml process file, one of the blocks of the Simplified
Use Case. Two ROS actions are progressively described. Both are defined as TraceAble actions,

which is a wrapper defined in TraceBot to perform data traceability in a systematic way.

13

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

Figure 6 Hierarchical finite state machine generated by the Skill Execution Engine based on
the sequences of behaviours described in the simplified use case process file “insert canister”.

3.2.2 Available Flexbotics state classes

A complex application usually requires additional mechanisms beside a sequential execution. The

Skill Framework supports conditionals and loops through decision states. Additionally, concurrence

is also supported with a special state, allowing executing concurrently different operations.

In the current version the defined tags to construct the state machine and its states are: !Link,

!Sequence, !Concurrence, !Skill, !Service, !Action, !TopicCondition, !Decision, !SetVars, !Include,

!Python

• !Sequence and !Concurrence are state machines with a sequence of states. !Sequence executes
each state one by one and !Concurrence executes them all at the same time. A state machine

can also be included as a state to create nested state machines.

• !Skill, !Service, !Action are the main states of the state machine. !Skill calls a python function,

!Service calls a ROS service and !Action calls a ROS action. They all store the results in their

parent state machine. On the one hand, the actions should be used for everything that runs for

a longer time than a couple of seconds, especially if robot or device movement is involved.

Actions can be pre-empted and are designed for being able to provide feedback. On the other

hand, services should be used for a remote procedure call that terminates quickly (e.g.

14

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

perception routines, I/O operations, etc.), since they cannot be pre-empted. Additionally, for

specific needs Python skills can be used. They are intended to use for mathematical operations,

data transformation, quick type management, etc

• !Link tags are used to link input parameters with previously stored results. This enables using

the result data from one state as an input of another state.

• !SetVars stores objects in the state machine directly from the YAML file. It can be used for

index creation or initializations.

• !TopicCondition waits for a specific message to be published.

• !Decision are used to jump to another state if a condition is met. This allows to create non-
linear state-machines. It can be used for conditionals and loops.

• !Include can be used to include another yaml file. Some of the fields of the included file can be

overridden to allow reusability.

• !Python can be used to import arbitrary python objects. This tag also allows using SMACH

states beyond the default ones.

Summarizing, an application is modelled in a file that we call process with a YAML syntax. This

process file is a sequence of steps that we want to complete and each of the steps we call states having

the analogy with the execution state machine that is generated from the YAML.

3.3 Finite State machine for execution control

The framework execution control is managed by the Flexbotics Execution Manager. It is built as a

Finite State Machine itself. It manages the execution of the process files, which is loaded as a sub-

state machine and represented as a succession of previously introduced state types (Section 3.2). The

state machine allows simple and robust management of execution status such as resuming, stopping

and error handling at every moment. The diagram presented in Figure 7 summarises the class

structure of the Flexbotics Execution Manager.

Traceable Robotic Handling of Sterile Medical Products

 TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089), 2021-2025

Figure 7: Flexbotics Execution Manager structure. Possible states of the Execution Manager are (light blue) INIT, READY, PAUSE,
ERROR_HANDLING and ON. In ON state, the Flexbotics Execution Manager instantiates a sub-state machine from the process

description using the indicated basic classes (in dark blue)

Traceable Robotic Handling of Sterile Medical Products

 TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089), 2021-2025

The Flexbotics Execution Manager can be in the following states (see left diagram of next figure):

• INIT: Responsible of initializing the process file to execute. When a process file is provided,
it is parsed and checked to control its correctness: YAML process is well-formed, !Link tags

correctly set, typos, etc.

• READY: Waits until on signal is received (usually when play button is pressed in the GUI).

• ON: ON state is the responsible of executing successively the provided process. The following

bullets summarize the steps carried out by this ON state:

1. Loads the previously validated YAML process description and creates a SMACH sub-

state machine if it does not exist (such as the one presented on the right diagram of the

next figure)

2. Passes input parameters to the state

3. Executes current state

4. Stores state result values

• PAUSE: Waits until on signal is received without operating. If the stop signal is received,

cancels ongoing execution and returns to INIT state

• ERROR HANDLING: Allows handling the errors that may occur during the execution. If an

exception is raised the state-machine triggers to ERROR HANDLING state and there,

depending of the application recovery strategies or controlled shutdown can be performed.

In Figure 8, the Flexbotics Execution Manager state machine and the application sub-state machine

can be appreciated.

Figure 8 Flexbotics Execution Manager state machine (left) and the application sub-state
machine (right). The right state machine is generic for any application, while the left state

machine is specific to a process being executed.

17

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

4 TraceBot improvements over initial Skill Framework

At the beginning of the Tracebot project TECNALIA proposed the Skill Framework as a common tool

for robotic application development. Significant improvements were made in the early stages of the

project and, throughout the project, new functionalities have been added according to the project

needs. In addition, the partners have been supported to facilitate the use of the framework and to

integrate their developments in an effective way.

4.1 State machine-based process execution

In the initial version of the Skill Framework, the process files were a sequential list of Python skills

stored in a XML format. The Flexbotics Execution Manager executed them sequentially without any

kind of possible logical conditions in the execution. Besides, there were no simple way for visualizing

the current operation and the successive ones.

The development of a state machine-based process execution provides us with several advantages:

• More complex applications can be modelled (i. e. not necessarily sequential), thanks to the

conditionals and loops logical operators that can be implemented. With the previous approach

each skill must handle the error handling behaviours, thanks to the new implementation the

skills can have smaller granularity and delegates the logic to the YAML process.

• Improved introspection features

• More traceability and robustness

4.2 Process checker

With the previous version of the Skill Framework, it was common spending significant time fixing

bugs in the XML process files. There was no mechanism for checking the XML schema and syntax. In

addition, since XML files were usually created by hand, introducing errors, typos and copy & pasted

blocks of code that cause runtime errors was incredibly common.

The process checker is a utility package that allows the validation and standalone execution of YAML

state machines. With the process checker implemented in TraceBot, the YAML process files can be

checked at any time. Besides, the process checking has been incorporated to the process loading stage

in order to avoid the majority of the runtime errors caused by typos or not consistent implementation

of the process tasks.

It is available as a command line tool that can be called with `flexprocess`, similar to the ones

provided by ROS to check messages and services. It has the following options:

• flexprocess show: Display the contents of the process file

• flexprocess info: Display information about the state machine, such as inputs parameters and

results

• flexprocess run: Run the process file and show the outputs

18

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

• flexprocess mock: Run a mock version of the process file, which instead of running each state,

just mocks the output values. This is useful to check the correct linking of the variables without

having to run the whole process.

4.3 YAML syntax for process files

As mentioned above the previous implementation of the Skill Framework was based on XML process

files for describing a robotic application. Both XML and YAML file can be easily parsed, but YAML

has simpler syntax and enables a simple usage of the tags5, a strong argument for changing the format.

Through YAML tags application-specific classes can be referred directly from the YAML file. The tag

mechanism provides a simple way for constructing SMACH state machines, with the required

diversity of states, when the process files are loaded.

4.4 TraceableAction

The Tracer component developed as part of the TraceBot project is responsible for creating the final

audit trail based on the process execution. The tracer component adds traceable information provided

by the !Action, !Service, !Skill, and !Sequence tags. These are integrated into the skill engine using

!Python tags, i.e. !Python:tracebot_tracer:TraceableAction instead of !Action. Using this tag, a

inherited class is used instead of the standard skill class. This inherited class handles the publication

of the input, output and possible feedback of the operations, information which is captured by the

Tracer module to enrich the audit trail. This can be done automatically since all ROS data format are

serializable, Thanks to this inheritance, the publishing process is made automatic so that a creator of

a new action does not have to take care of this transmission, which enforces the mechanism usage at

minimum cost.

More details on the Tracer component can be found in D4.1.

4.5 Meta-information

The initial implementation of the Skill Framework suffered of lack of cohesion between the skills. The

skills could not be considered as independent and self-sufficient entities and, consequently, often

additional pieces of code and checks had to be introduced inside the skill implementation.

The skill meta-information proposed in Tracebot intends to provide a common structure for defining

the requirements and the effects of the skills. In that way, the implementation of the checks for

required pre-conditions can be centralized in another entity outside the skill implementation.

Similarly, the effects in the environment can be registered without having to adapt the

implementation of the skill.

5 https://yaml.org/spec/1.2.2/#24-tags

19

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

4.6 Skill framework usage in TraceBot

The skill framework is extensively used in the project, for the functionalities and the ease of

integration it provides. All the robot applications are implemented using the framework. Each use

case executed on the robotic system is currently described through YAML process files as presented

in this document. Following the hierarchical description of the complete use case, accessible at the

TraceBot showcase website6, the processes are divided into subprocesses (i. .e. YAML files) that can

be reused for other applications requiring similar behaviours.

The developers focus on the development of their module, from the perception and verification aspect
(in WP3 and WP4), the hand controller (WP2) and arm controller (WP3), to the system reasoning
with the KnowRob platform (WP5) and the Digital Twin representation (WP5). The appropriate entry
points are jointly defined, and made available through standard ROS actions and services interfaces.
These entry points are then introduced in the process files as skills using the tool described in this
document. The advantage of this strategy is that the modularity capability, key characteristic of the
ROS framework, is also maintained using the skill framework. This way we maintain all associated
advantages, such as the ease of code sharing, deployment and upgrade.

The Skill Framework acts as an orchestrator, dispatching each of the skills in the process file to the

responsible module. It also takes care of relating the skills to each other, ensuring the data flow from

one skill to the other.

With such framework, the connection with the traceability and verification layer developed in WP4 is

also facilitated. Verification components can be incorporated in the process description, using the

same interfacing mechanism. The incorporation of the traceability concept at the level of the Skill

framework, as described in this document presents the advantage of ensuring a systematic

management of such matter in the complete flow. The implementation of the traceability concept is

centralized in a well-localized piece of code (the TraceableAction class), so that any variation or

adjustment of the implementation or concept can be done without having to refactor all the skills

already implemented, which corresponds to a significant gain in time.

6 https://tracebot.gitlab.io/tracebot_showcase/

https://tracebot.gitlab.io/tracebot_showcase/

20

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

5 Conclusion

In TraceBot, the Skill Framework has become the de facto integration and execution environment.
This framework provides a standardised way of constructing and integrating each organization’s
contributions, thanks to a set of guidelines and best practices for developing skills. The development
of different functionalities is approached using the skill concept, which comes from the robot Skill
Based Programming philosophy. Each partner in the project has implemented its set of skills,
wrapped as action servers within the ROS ecosystem. This distributed approach enables different
partners to work independently but, thanks to the Skill Framework, the integration of the
development is significantly simplified.

A YAML syntax is used to create a robot program using the proposed framework. These files, called
processes, are, in short, a sequence of blocks with a specific label for each one of them. This document
presents the tags available and their purpose. Furthermore, it also describes how SMACH state
machines are now generated from these process files to execute the described behaviours. The
Execution Manager is in charge of loading these process descriptions, and then taking care of the
execution of the processes by controlling the configuration and execution of the described skills.

One of the main advantages of the framework is that it is generic enough to be applied in a variety of
scenarios. Consequently, throughout the TraceBot project, several functionalities have been added
according to known and emerging needs. One of the most relevant and widely used functionalities in
the project are the TraceableActions, that are an extension of the original skill model to include some
traceability functionality for automatically publishing the input, output and possible feedbacks of the
operations, information that is captured by the Tracer module to enrich the audit trail.

The main functionalities of the skill framework are now implemented. Even though the task T3.1 in
which that work has been conducted is getting finished, the framework could still be improved based
on the additional needs that may be identified during the further experimentations.

21

D3.1 Skill-based framework description

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

6 References

[Björkelund2011] Björkelund, A., Edström, L., Haage, M., Malec, J., Nilsson, K., Nugues, P., &

Bruyninckx, H. (2011). On the integration of skilled robot motions for productivity in

manufacturing. In 2011 IEEE International Symposium on Assembly and Manufacturing

(ISAM) (pp. 1-9).

[Fox2003] Fox, M., & Long, D. (2003). PDDL2. 1: An extension to PDDL for expressing temporal

planning domains. Journal of artificial intelligence research, 20, 61-124.

[Pedersen2016] Pedersen, M. R., Nalpantidis, L., Andersen, R. S., Schou, C., Bøgh, S., Krüger, V., &

Madsen, O. (2016). Robot skills for manufacturing: From concept to industrial deployment.

Robotics and Computer-Integrated Manufacturing, 37, 282-291.

