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1 Executive Summary 
 

  

The TraceBot project aims to establish a comprehensive traceability framework that adheres 

to laboratory automation regulations in the pharmaceutical industry. Our proposed 

verification methods employ various modalities to ensure accurate execution of processes 

and the creation of an audit trail. By replacing standard actions with Traceable Actions, we 

systematically capture and log all operations and actions conducted by the robotic system. 

This enables us to track the progress of the process and ensure that its ultimate goal is 

reached. 

In addition to capturing the process structure, Traceable Actions also automatically gather 

and send their input and output onto a specific and unique channel. This ensures that all 

relevant subsymbolic and sensor data is logged and stored. To further enhance the 

capabilities of the traceability framework, we utilize KnowRob, a knowledge processing 

system for robots. KnowRob is capable of storing and processing both symbolic and 

subsymbolic information related to the execution of the process. By combining the data 

gathered by Traceable Actions with KnowRob's memory episodes, we can create a Narrative-

Enabled Episodic Memory (NEEM). This NEEM can be meaningfully queried by humans 

during inspection, allowing them to quickly and accurately understand the success or failure 

of any action taken by the robot without needing to meticulously inspect all sensor data. 

To ensure that the execution of the process is going as expected, we have developed a set of 

verification or checking actions using visual and tactile sensing, as well as functional 

considerations thanks to the knowledge infrastructure provided by KnowRob. These 

verification steps are also implemented using Traceable Actions, guaranteeing that all 

information is traced and logged.  
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2 Introduction 
 

This document gives an update on the methods for task verification as part of the traceability 

framework developed for the TraceBot project. Its purpose is to produce a meaningful audit 

trail adapted to the regulatory constraints of laboratory automation, and specifically, sterility 

testing, which is the use case that the TraceBot project focuses on. 

Traceability consists in both the collection of all the data relevant to the process, and its 

presentation in a meaningful and usable way to spot and understand failures. The consortium 

therefore focused in developing tools that enable the automatic collection of all the data used 

during the process execution and its presentation in a meaningful format. The verification 

steps are essential in such a regulated domain as sterility testing. To obtain traces of what the 

robot is actually doing, we propose to use three modalities of verification: tactile, visual, and 

functional verification. The different modalities are used to verify the correct execution of the 

process according to the needs in different steps of the robot assembly process. Since these 

steps are also traced, this guarantees the inclusion of any important data into the final audit 

trail.  

The traceability framework in itself has been presented in D4.1. No significant changes 

happened in the traceability framework. The concept presented in the D4.1 is still in place. 

Each action is wrapped automatically with custom code, that enables logging the input and 

output of every item happening. This code also starts a Narrative-Enabled Episodic Memory 

event for each action. This information is then used and presented in a compact form showing 

which hierarchy of actions was executed, and whether the checking actions (verifying the 

good execution of the process) are successful or not. Link to the detailed information 

contained in the NEEM is provided in the same document. 

The following document outlines a comprehensive approach to task verification. Firstly, an 

overview of the tasks to be addressed is presented, followed by a detailed description of the 

tactile sensing approach used for task verification. Next, the vision-based method employed 

for task verification is presented, and lastly, functional task verification is addressed. 
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3 Tasks for Tactile, Visual, and Functional Verification  
 

The traceability objective cannot be completely addressed if the robot is not equipped with 

means to verify the successful execution of the process. Therefore, aside the implementation 

of the traceability framework, TraceBot aims at developing a set of operations which purpose 

is to confirm through sensing and acting that the environment state is as expected.  

To actually verify the robot actions, three modalities are proposed following the tasks T4.2 to 

T4.4. This section covers these different modalities and their use toward meaningful 

verification: Tactile Task Verification in Section 4.1, Visual Task Verification in Section 4.2, 

and Functional Task Verification in Section 4.3.  

An overview of the steps of the assembly process of the sterility kit is given in Table 1 below. 

It indicates the task, what objects are handled, a key challenge to automate the step, if one or 

two robot arms will be necessary to complete the task, the necessary perception and an 

excerpt of the verification tasks. The steps including a verification task are marked black and 

also refer to the Milestones as described in D1.6 v2. 

Table 3.1: The process steps for assembling the sterility kit that will have verification 

actions (black) as part of the entire assembly procedure (other process steps in grey). The 

marked steps (black) correspond to the Milestone description in D1.6v2.  

# Tasks 
Objects to be 

handled 
Challenge Arms 

Necessary 

Perception 
Verification 

1 Manual Preparation 
Equipment set 

up 

Scene 

understanding 
1-2 locate all items 

Model in Digital 

Twin 

2.1 
Kit unpacking – Open 

Pack 
Pack, Tyvek-foil 

Flexible 

material 
2 

locate pull-tab 

top corner 
foil removed 

2.2 
Kit unpacking – Remove 

Kit 
SteriKit 

Flexible 

connected parts 
1-2 

locate grasp 

point 
all parts present 

3.1 
Kit mounting - Fit 

Canister To Drain 
canister (2) 

Click, entangle 

tubing, small 

tolerances 
1 

locate top of 

canister, seat… 
Check relative 

pose 

3.2 
Kit mounting – Insert 

Tube Into Pump 
tubes, pump 

Flexible 

material 
2 locate tube pull at tube 

4.1 
Needle preparation – 

Remove Needle Cap 
needle set (of 

sterility kit) 
Small, force 2 

locate cap 

element 
can see needle 

4.2 
Needle preparation – 

Insert Needle Into Bottle 
needles, bottle 

Perforating, 

force 
2 

locate needle, 

sense 

vibrations 

Check force 

profile 

5 Wetting 
Pump, canister, 

plugs & bottle 
Operate pump 1 - read pump data 
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6 Sample Transfer 
Pump, canister, 

plugs and vials 
Vial breaking 2 locate vials 

confirm brake 

and emptyness 

7 Filter Sample 
pump, canister, 

plugs & bottle 
Operate pump 1 - read pump data 

8 Washing 
pump, canister, 

plugs & bottle 
Operate pump 1 - read pump data 

9 Media filling 
pump, canister, 

plugs & bottles 
Operate pump 1 - read pump data 

10 Cut And Close 
canister, cutter, 

clamp 
Cutting, force 1-2 

locate clips, 

sense 

vibrations 

can see cut tube, 

detect clamp 

closure 

11 Finish 
pump, canister 

and tubes 
No dropping of 

fluids 
1-2 locate tubes 

In storage 

location 

12 Manual Finish 
Equipment 

reset 

Scene 

understanding 
1-2 locate all items 

Model in Digital 

Twin 

 

In the following sections, we will present in detail each verification modality that we have 

developed. These modalities utilize various techniques such as visual and tactile sensing, 

functional considerations, and knowledge processing systems, mainly KnowRob. By 

thoroughly examining each verification modality, we aim to provide a comprehensive 

overview of the measures we have taken to ensure the accuracy and compliance of our 

traceability framework.  
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4 Tactile Task Verification  
 

Tactile verification will be implemented in a comprehensive and systematic manner for every 

robot grasping action and a number of assembly actions. Specifically, during grasping 

actions, tactile information can be utilized to ensure the proper acquisition of objects (sub 

section 4.3). Additionally, for specific verification actions, tactile feedback can be employed 

to capture and analyze the evolution of forces while executing an operation, such as when 

closing the clamp (subsection 4.4) or when inserting the needle into the septum (subsection 

4.5). For the two latter, a generic model approach has been evaluated (subsection 4.6).  

In order to ensure the accuracy and reliability of the tactile verification process, it can be 

mostly executed in segments. This approach entails activating the verification routine prior 

to the initiation of the task, and deactivating it upon completion of the task. During this time, 

the routine buffer the sensor signal. Once the logging is complete, a task-specific verification 

algorithm can be applied to produce a binary output indicating the success or failure of the 

task.  

For continuous gripping surveillance, the TraceBot tactile sensors can also provide valuable 

information regarding the slip detection (subsection 4.7). 

Since the TraceBot gripper is not ready by this time, we have mainly used the Franka Emika’s 

Panda cobot manipulator with a single sensor placed on its bi-digital gripper to perform the 

training, then we have tested on the one finger setup of TraceBot to verify that the training 

can be transferred to another setup. 

 

4.1 Notations 
For the following text, we are going to be using those notations to describe the tools we are 

using: 

- Tactipatch sensor: The hybrid piezoelectric-piezoresistive tactile sensor developed by 

CEA-LETI and used for each phalanx of the gripper as well as the palm (see details in 

deliverable D2.2). 

- Tactipatch software: A metrology tool designed to connect to tactipatch sensors, log 

data, annotate data, as well as realtime testing. This is used for our video 

demonstrations.  

- Piezoelectric sensor: The piezoelectric sensor part of Tactipatch, running at 10KHz per 

patch. There is a single sensitive element for each patch. 

- Piezoresistive sensor: The piezoresistive sensor part of Tactipatch, running at 100Hz 

per patch. Each sensor returns a 8x8 matrix measure (64 sensels) that can be 

interpolated to much higher resolution using either AI-based techniques or simple 

interpolation algorithms. 

- Sensel: A sensory pixel that returns a function of a local deformation at position x,y 

inside the Tactipatch piezo resistive array. 
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- Panda Robot: A manipulation Cobot built by Franka Emika and used by our lab for 

testing our individual sensors. The cobot was modified to integrate tactipatch sensors 

in its end effector. 

- Carousel: A linear 3 axis robot with integrated force measurement sensor and an 

interface that can be synchronized with our system with 10ms uncertainty. 

- LSB (Least Significant Bit): A raw unit depicting the direct output of the piezoelectric 

sensor in binary. 

 

4.2 Presenting Tactipatch software 
  

Tactipatch software is a data logging tool for our hybrid tactile sensors that we have built in 

order to train models to do multiple tactile related tasks. In particular, the tactile-based task 

verification for multiple use cases. The tool enables both the recording and the real time 

verification process through a user-friendly interface (Figure 4.1). 

  

 

Figure 4.1 : Tactipatch User Interface for logging and Realtime data visualization as well 

as testing the algorithms   

 

To record data, we place the panda robot in a ready state. We connect the tool to the 

Tactipatch sensor and then we start the recording process (Figure 4.2). 
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Figure 4.2 : How to start the log via the TactiPatch UI 

 

The recording group box of buttons is used to annotate the actual status of the operation 

(Figure 4.3). By default the system is in free state which is a state. Before starting the clamp 

closure or the needle insertion operation (depending on what kind of verification is required), 

we press the operating button. This raises a flag that the system should buffer data to check 

if the operation is successful or not. In real application, this will be done using a ROS 

communication. Once the operation is done, we press free button to indicate that the 

operation ended, then we press either success or failure, according to the situation. Then we 

move to the next test. This tool enables recovering large amounts of tests with human 

annotations. 

 

 

Figure 4.3: Zoom on the recording box of the TactiPatch UI 

 

Once the experimentation session is done, we stop logging and we postprocess the file by 

pressing the Reshape db button that will transform the recording into an easier to use 

database for machine learning purposes. 

This tool is independent from the robot as we can plug it to any of our sensors and record 

both piezoelectric and piezoresistive signals simultaneously while adding annotation. 

 

4.3 Object grasping task verification 
  

In this section, we will address the verification of the presence of an object in the hand after 

performing a pick and place task, such as grasping a canister, bottle, needle, etc. The 

verification process aims to ensure that the object to be grasped is securely held by the gripper 
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at the end of the operation. This can be achieved by utilizing tactile feedback to confirm the 

presence of the object. 

  

In our case, the hand is equipped with both piezo electric and piezo resistive sensors that 

allow us to sense spatial and temporal tactile information at low and high frequencies. For 

the object grasp verification, we rely on the piezo resistive sensor that allows us to sense 

contact between the different parts of the hand with another surface. 

  

The verification task is activated at the onset of the grasp operation. As the object comes into 

contact with the gripper, piezo resistive sensors are utilized to detect the contact by counting 

the number of sensels (sensing pixels) that were activated on different piezoresistive sensors 

as well as measuring their values. This enables the robot to understand that its phalanges are 

touching something, but does not confirm that the phalanges are not touching each other. 

  

To solve this problem we rely on the robot proprioception capability, offered by the positional 

encoders in its articulations. Using this information combined with the tactile sensing, it is 

possible to determine the 3D contact positions of each activated sensel in the reference frame 

of the gripper. If the two phalanges are touching each other, the sensel cloud points of the 

two phalanges overlap. This can be used to discriminate this case (Figure 4.4). 

 

 

Figure 4.4: Comparison of the case of fingers (black parts) touching each other or fingers 

touching the object (blue part).  
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Figure 4.5: 2d touch pixels (sensels) detection while holding the needle vertically. 

 

 

We have implemented the contact detection in real time using the panda robot as shown in 

Figure 4.5. The next steps (use of proprioception to validate that it is not the fingers touching 

each other) require the full gripper to be ready, so this will be dealt within the next deliverable. 

 

4.4 Clamp closure task verification 
  

The clamps must be closed by the gripper (e.g. for task #10 in Table 3.1). During this task, a 

click sound can be heard. To validate that the clamp was closed successfully, we can use our 

piezoelectric sensors. In fact, the vibration caused by the close event has a very specific 

signature. We use this to determine if the clamp was closed or not on our Panda Robot (Figure 

4.6 and Figure 4.7). 
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Figure 4.6: Clamp closure setup. 

 

Figure 4.7: Full testing setup with the robot, Tactipatch application software using a 

single sensor mounted at the Pandas’s gripper. 
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The process is as follows: 

1. Before starting the closure operation, we activate the clamp click detection module. 

2. We perform the operation. The module buffers piezoelectric sensor signal. 

3. When the operation is done, we query the module for success status.  

4. The module stops buffering and performs the detection: 

a. Compute the mean of the signal 

b. Remove the mean from the original signal 

c. Find the maximum position by computing the absolute value of the signal. 

d. Create a 40 samples window around the maximum 

e. Remove the mean value from the new signal 

f. Feeds this signal to the classifier 

g. Return the output of the classifier (success or failure) 

  

We have built a balanced training dataset. We have also built a balanced validation and 

testing datasets.  

  

To ensure that our results are robust and applicable to real-world scenarios, we included 

external perturbations in all of our experiments. These perturbations simulate potential 

sources of unexpected events, such as vibrations from the motors, movement of pipes during 

operation, or accidental impacts during manipulation. We sought to incorporate realistic 

scenarios, as the verification period was limited and the robot was isolated, so there was no 

need to include highly unlikely events. This approach allows us to achieve a high degree of 

accuracy with minimal computational resources. 

  

In order to prevent overfitting of the model to the robot, we established an initial training 

database of 120 tests, consisting of 60 successful and 60 failed trials, using a hand glove-like 

system (Figure 4.8). This approach enabled us to conduct the operation with human hands, 

providing a more comprehensive understanding of the task and ensuring that the model was 

not overly tailored to the robot's specific capabilities. This approach allowed us to establish a 

more generalizable model that can be applied to a broader range of robots and tasks. 
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Figure 4.8: Clamp closure setup with Human hands allowing to use multiple degrees of 

freedom manipulation. 

 

 

Subsequently, we augmented our database with recordings obtained using the Panda robotic 

arm gripper. Each experiment was meticulously annotated by the experimenter to ensure the 

accuracy and reliability of the data.  

To enhance the realism of the data, we introduced artificial noise to the signals to simulate 

sensor noise and random spikes that were observed during the gripping operations. Those 

spikes are likely to be linked to the force control algorithm of the panda robot. 

  

The noise (with a standard deviation of approximately 2.5 LSB) and spikes (with an amplitude 

of approximately 10 LSB) were directly measured on the robot through observation of the 

clamp's interaction with the phalanges while maintaining a steady grip force.  

Furthermore, we observed a disparity in the representation of maximum values and we 

included a signal inversion to correct for this. The final dataset consisted of 37,368 samples, 

with some samples deliberately corrupted by random spikes to test the robustness of the 

model (Table 4.1). 

  

  

Table 4.1: Number of samples for the training database before and after augmentation. 
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Table 4.1: Number of samples for the training database before and after augmentation. 

  Total number of 
samples 

Success Failure 

Before augmentation 173 74 99 

After augmentation 37368 15984 21384 

  

A similar approach has been followed to constitute the validation (Table 4.2) and the test 
(Table 4.3) databases. 

  

Table 4.2: Number of samples for the validation database before and after augmentation. 

  Total number of 
samples 

Success Failure 

Before augmentation 26 13 13 

After augmentation 5616 2808 2808 

  

  

Table 4.3 

Table 4.3: Number of samples for the test database before and after augmentation. 

  Total number of 
samples 

Success Failure 

Before augmentation 39 20 19 

After augmentation 8424 4320 4104 

  

The classifier we opted to use is a tiny neural network that operates on the 40 samples 

window. This is a more robust method compared to simply using a threshold on the 

amplitude as the neural network learns the signature of the signal, and not only the minimum 

amplitude.  
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Figure 4.9: Comparison of raw piezo-electric signals (in LSB) from successful (green)and 

failed (red) clamp closure attempts. 

 

 

It is clear that the success signals do have a typical pattern that varies a little bit in frequency 

according to tests (Figure 4.9). The neural network is an excellent tool to learn those 

variations with minimal tests. We used a single convolutional layer, followed by a global 

average pooling, a dense layer, and a final success/failure decision layer (Figure 4.10). This 

architecture allows the neural network to learn frequential information thanks to the kernels 

of the convolutional layer. 

 

 

Figure 4.10: Architecture of the neural network. 

 

 

The number of kernels as well as their size was optimized using a search method. The final 

neural network features only 128 parameters in total and since it has a shallow structure, it 

can run at very high speed. 
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Table 4.4: Training, validation and test Results. 

 Train Validate Test 

Accuracy 100% 100% 100.0% 

Total data size 37368 5616 8424 

 

(Table 4.4) shows the obtained performances using our model on the train, validation and test 

databases as well as the number of augmented data size for each database. It clearly shows 

that the detection has been successful on all our databases. 

 

In this work, we showed that it is possible to detect the click event using the piezo-electric 

sensor on the contact phalanx. 
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4.5 Needle insertion detection 
 

 

Figure 4.11: Needle insertion setup. 

 

We have used the same setup presented in the previous chapter to train another model for 

detecting the success of the needle insertion in the bottle (task #4.2 in Table 4.1) using only the 

piezoelectric sensor. The main difference between the two events is the event signal duration 

as the needle insertion takes longer time than the clamp click. 

  

To solve this difference point, we have added few steps to the operations described previously: 

 We first use a large window around the max position of the signal amplitude. Here we 

use a window of 1 seconds (10000 points) 

 We then lowpass filter the signal to only 100Hz 

 We then decimate the signal by 50 to get a window of signal of only 200 samples 
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Once these operations are done, we get back to exactly the same setup than the one used to 

detect the click. The neural architecture had to be enhanced though because there are more 

variety in the success and failure signals (Figure 4.12) as there are many ways this can fail: 

 One of the failures happens when the needle hits the border of the bottle resulting in 

the destruction of the needle. This failure results in a very high spike on the piezo 

electric signal. 

 Another kind of failures happens if we completely miss the bottle, which results in no 

significant disturbance in the piezoelectric signal. 

 The third kind of failures happens if the needle hits the rubber bottle cap without 

penetrating all the way. 

 

 

 
Figure 4.12: Unaugmented signals after performing all the pre-processing steps. 

 

The signals are more diverse than in the first case and a single convolutional layer was not 

enough to get good results. This is why we went with a more complex architecture (Figure 

4.13). The architecture features a succession of two layers of convolutions that discovers 

interesting additive features from the pre-processed signal. This part learns to build a 

reshaping of the original signal in order to perform the classification task. Once the signal is 

updated, we flatten it and apply two dense layers. The last layer has two outputs with a 

softmax activation which makes it capable of issuing a probability that the task succeeded or 

not. The residual part has many benefits that was already addressed for the case of images by 

the 2015 Microsoft paper about residual networks [9]. We just bring this concept to our case 

with timeseries using a rather shallow architecture. This helps the gradients flow smoothly 

during the training step. We have also added a regularization mechanism to all layers. This 

forces the training to obtain the simplest possible model that produces accurate solutions. 

This is important to avoid overcomplicated models which result in overfitting. 
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Figure 4.13: New architecture of the neural network for event detection. 

 
There are three key elements to get a robust model: 

1. The workflow parameters (optimized window size, filtering and decimation) 

2. The neural network structure (the residual trick + l2 regularization) 

3. The data augmentation (with realistic noise and artefacts) 

  

The regularization mechanism, combined with the data augmentation, and the residual block 

architecture enhanced the ability of the network to generalize to never seen examples. 

The performance on validation data increased drastically compared to using a classic deep 

convolutional neural network, a shallow convolutional neural network and even a deep dense 

neural network. Most of other architectures ended up to a high level of overfitting, leading to 

high performance on the training set but poor performance on the validation set. 

 

 
  

Table 4.5: Number of samples for the train database before and after augmentation. 

 Total number of 
samples 

Success Failure 

Before augmentation 91 45 46 

After augmentation 3276 1620 1656 
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Table 4.6: Number of samples for the validation database before and after augmentation. 

 Total number of 
samples 

Success Failure 

Before augmentation 18 8 10 

After augmentation 648 288 360 

      

      

The following table shows the train and validation results using the augmented database for 

train and validation data: with an accuracy of 100%, the results are quite satisfying. 

 

Tableau 4.7: Results for needle insertion 

Train Validation 

100% 100% 

 

 

4.6 A generic model for piezo-electric based task verification 
 

After building the needle insertion verification task model, we wanted to test our new model 

on the clamp closure task as the model we built for this task may be seen as a subcase of the 

workflow developed for the needle insertion (we use a smaller window, there is no filtering 

and decimation). 

This resulted into a generic parametrizable version of this model that could be applied to 

multiple piezoelectric based tactile verification tasks. The parameters that can be learned for 

each task are: 

 initial window size 

 filtering bandwidth 

 decimation level 

 neural network weights 

 The results on the clamp closure verification task were as high as the ones obtained with the 

simple shallow neural network on all tests (train, validation, test).  

  

Once the model is trained, we have tested it using the finger setup built by CEA-LIST in Paris. 

The tests used the intermediate phalanx to perform the clamp closure.  

  

Since the final gripper is not yet ready, we were not able to perform this task using the entire 

gripper, but the results showed the capability of the model to generalize to a system it was not 
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trained on before. Here, both the coating and the architecture of the manipulator were 

different from the training setup described in subsection 4.4, and yet the model could 

distinguish successful and failed attempts with a relatively high accuracy level, as detailed 

hereafter. 

  

 

Figure 4.14: Clamp closure test setup using the first prototype of the Tracebot gripper 

Finger. 

 

Twenty-nine actual closure tests have been conducted with the finger, including 13 success 

and 16 intended failures. As described in subsection 4.4, we have applied data augmentation 

to the test samples in order to have more meaningful results, increasing the samples number 

by 216 times (Table 4.8). 

 

Table 4.8: Number of samples for the test database before and after augmentation. 

 Total number of 
samples 

Success Failure 

Before augmentation 29 13 16 

After augmentation 6264 2808 3456 

 

The tests showed a final result of 90% accuracy on the actual finger which is very encouraging, 

considering that the model has never seen data coming from the finger setup before. 

  

This result will probably be greatly enhanced once the model finetuned with data from the 

actual gripper, which will take into consideration the new coating as well as the full 

parameters set (material, kinematics, the arm vibrations etc). 
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At this stage, the single finger setup cannot be used to test the needle insertion in the bottle 

yet. But tests will be carried out once the full gripper is ready and mounted onto the robotic 

arm. 

 

4.7 Slip detection 
 

We have also worked on slip detection and we have submitted a paper to the IEEE/ASME 

AIM 2023 conference1.  Unlike the other models presented in this section, the slip detection 

algorithm (used for both WP4 and WP2) is being executed in real-time and does inline 

detection of the slippage during manipulation. The objective is to signal the system that the 

object is sliding as fast as possible so that the controller can take the necessary measures. 

That explains why we are using a completely different approach. 

  

To detect the slippage, we have chosen to use the piezoelectric sensor and to exploit the 

frequential properties of the piezoelectric signal. 

To perform this, we needed to build a well-controlled slippage detection database. We used 

our robot (Carousel) built in our lab to test our Tactipatch sensor. This robot allows us to 

perform various touch tests while providing synchronization of the events with the sensor 

signal and while providing a reference touch force measurement. 

We have tested multiple configurations of slippage controlled by Carousel (Figure 4.15), 

leading to a database of 3200 tests, with: 

 Still pressure (no slippage) 

 Slippage with linear motion at various speeds 

 No slippage, with external perturbations such as vibration 

 Tests without slippage during robot motion (done with the panda robot) 

 use of various contact tips to simulate different properties (shape, softness, size, 

material) 

This allowed us to build a big dataset used to train our models, compare the performances of 

slip detection and measure the mean detection time compared to the reference.  

 

 

                                                   

 

 

1 Spectro-temporal RNN structure for object slip detection using piezoelectric tactile sensor in robotic grasping 
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Figure 4.15: Slip detection training setup. 

 

The algorithm used in this section can be split in two steps: 

- Compute the spectrogram: To compute the Power Spectral Density (PSD) of a mean-

subtracted piezoelectric signal, we use Fast Fourier Transforms (FFT) with temporal 

windows of 200 values (equivalent to 20ms at a sample rate of 10kHz). The 

spectrogram of the entire signal is created by concatenating the FFTs and forming a 

2D array with frequency and time axes, providing information on the frequency 

content and evolution of the signal over time (as depicted in Figure 4.16). The 

frequency bins range from 0-5kHz with a resolution of 50Hz per bin. 

- Use a GRU (Gated Recurrent Unit) based RNN: The resulting spectrogram is then fed 

to a Recurrent Neural Network (RNN), processing one FFT at a time, to detect 

temporal patterns. Classification is performed on each time-step, every 10ms. The 

RNN has 4 stacked Gated Recurrent Units (GRU). 

  

The following figure presents the workflow that allows to detect the slippage by fusing 

information from past and present moments to predict the current slippage status. This 

architecture is particularly suitable for the detection of the slippage as it takes into 

consideration the sequence of events as well as the frequential information. We have 
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compared the use of RNN GRU vs MLP (Multi-Layer Perception) and TCN (Time 

Convolutional Network) and it outperformed both of them in multiple configurations. 

 

 

 

Figure 4.16: Slip detection training setup: the spectrogram (top), the recurrent neural 

network (middle) and the classification output (bottom). 

 

 

The model resulted in an average accuracy of 98.6% over individual 10ms decision. On the 
3200 tests, only 7 were incorrectly recognized in a window of 80ms around the starting of the 
slippage. For the rest of the samples, the average delay between the real starting of the 
slippage and the actual detection is of 8.5ms. We have noticed that for a delay of 20ms, in the 
fast motion setting, the head of the robot travelled 0.7mm (the head motion has an 
acceleration phase, a steady speed phase and a deceleration phase). This displacement in the 
use cases covered by this work can be tolerated as it can easily be recovered. 
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4.8 Remarks 
 

Although the outcomes of this research are remarkable, they have been obtained under 

different control conditions than those that will ultimately be implemented once the final 

gripper is fully operational. It is imperative to conduct additional testing to account for the 

variations in control strategy, mechanical components, and environmental conditions. This 

will ensure that the results can be accurately extrapolated to the final operational scenario. 

 

4.9 Conclusion and perspectives 
 

In this section we showed how it is possible to use the hybrid tactile sensor to do the following 

task verifications: 

 Object presence in the gripper verification 

 Object slip verification 

 Clamp closure verification 

 Needle insertion verification 

We have developed multiple algorithms based on machine learning and analytic methods. 

The test results on the available systems are encouraging with success rates higher than 95%. 

A simple test for the clamp closure using the TraceBot finger resulted in more than 90% of 

accuracy which is encouraging given that the system used for training is completely different 

from the actual setup. 

The future work would focus on integrating these modules in the global system via ROS 

interfaces and fine tuning the models on the final setup. 

To ensure more robustness and to enable other verifications that may not be done using 

tactile sensing, visual verification will be discussed in the next section. 
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5 Visual Task Verification  
 

Visual task verification generally refers to checking whether at a certain location an object is 

detected and in a specific pose. This verification does not only use visual input from RGB-D 

sensors, but also physics simulation capability to check, whether the proposed visually 

observed pose of the object makes sense given the context such as supporting plane and other 

objects. We envision this type of visual verification to check whether objects are in the correct 

location and pose after a manipulation action, like inserting the canister in the tray or locating 

the needle before it is inserted into the septum. 

 

5.1 Transparent Object Pose Verification 
 

We propose to approach the problem of transparent object pose verification using 

differentiable rendering. This consist in the creation of a 3D representation of the scene of 

interest using 3D models, and the use of a differentiable renderer, that is a renderer whose 

every operation is implemented in a differentiable manner to obtain a rendered view of that 

scene that can then be compared to the captured view of the real scene. The benefit is that, 

given a suitable loss function definition, parameters of the 3D scene, like the pose of objects 

or their appearance, can be optimized directly in the image space, as gradients can flow 

through the differentiable renderer. The benefit of this kind of approach in the context of 

verification is that it can take advantage of all the existing knowledge about the scene through 

the scene modelling. In its simplest form, it also only requires an RGB image from the scene 

to perform the optimization, which makes it suitable to handle transparent objects that 

typically cannot be captured by depth sensors. 

We therefore investigated the applicability of differentiable rendering to pose refinement and 

verification. Based on the initial estimate of the pose from the pose estimation module of 

WP3, the optimization process and its convergence inform us on the correctness of the 

original estimate and provide a better estimate of the pose as a side effect. 

The challenge is that comparison between rendered and captured images cannot be 

performed directly in the RGB space, as it is very sensitive to local changes and mild 

differences in illumination that can be very hard to model. This creates a lot of sub-optimal 

local minimums, preventing a good optimization. We therefore need to select a more suitable 

space to compare the image and define the loss function that will drive the optimization 

procedure.  

In a first step we evaluated the feasibility of using a detection mask to supervise the pose 

verification and refinement (see next Figure 5.1). Masks in this context are simple binary 

images that separate the object of interest from the background. Based on the currently 

estimated pose, it is trivial to obtain such a mask from the renderer, and we can compare it 

to the mask obtained in the real world from the object detector. This leads to good 
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convergence. It however relies on the accuracy of the object detector to perform the 

verification. 

 

Figure 5.1:Illustration of the differentiable rendering optimisation process 

 

This approach was then supplemented by a signed distance field-based loss to include 

physical constraints. Querying the signed distance field of the points of the object of interest 

compared to the neighboring objects, or the supporting plane lets us easily estimate whether 

the objects are intersecting, and express it in a way that is compatible with the representation 

of the scene and the optimization. This is illustrated in figure 5.2. 

 

Figure 5.2: Illustration of the signed distance field-based loss. Red points are directed 

outwards, illustrating the repulsion between objects to avoid intersection. 
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To further robustify the process, and make it less dependent on the object detector (and 

therefore not depend on its limitation when performing the verification step), we then 

investigated the use of an edge-based loss (see Figure 5.3). Edges can easily be obtained from 

a real image and a rendered image, are significantly less noisy than the RGB space itself, and 

transparent objects still provide meaningful information in that representation. They are 

therefore a good way to reduce the domain gap and make the optimization more robust. 

During the optimization, the edges of the real image are obtained once at the beginning, then 

the renderer computes only the contour of the object of interest, by computing the edge of the 

simulated depth map.  

 

 

Figure 5.3: Illustration of the optimization steps based on edge maps 

 

5.1.1 Next Steps: In-hand Pose Estimation 
The two following subsections refer to verification means that are under investigation. We 

outline our initial results and intended plan to refine their implementation. 

The verification process presented in the previous section takes advantage of the knowledge 

of the support plane to constrain the optimization. However, we need to expand upon this 

process to be able to address in-robot-hand object pose verification. The robot arm 

kinematics are known, giving us a good estimate of the end-effector pose. The relative pose 

of the object and end-effector used during the grasping procedure can also be used as an 

initial estimate for the object pose. 
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Figure 5.4: Segmentation of a robot arm and the canister from the background. Using the 

knowledge of the robot arm as well as the knowledge of the object enables us to optimize 

the in-hand object pose 

 

The connection between the end-effector fingertips and the object is a physical constraint that 

we intend to model in a similar way as object intersection and the supporting plane and object 

interaction presented in the current system. 

This scenario opens up further opportunities for verification as the ability of the robot to move 

enables us to perform multi-view optimization of the object pose. Under the assumption that 

the transformation between object and end-effector remains rigid during that procedure, 

moving the robot arm in front of the static camera is equivalent to moving the camera around 

the end-effector, which is naturally accounted for in our current setup, as cameras can be 

moved around the 3D scene setup that is being optimized. 

 

5.1.2 Next Steps: Liquid Fill Level Estimation 
 

Once the pose of a transparent container is estimated, we can refine additional parameters 

about the object using suitable scene representations. One such example is the fill level of that 

container (see Figure 5.5). 
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Figure 5.5: Optimization process for fill level estimation 

 

As a preliminary step, we propose to approach this problem in a static situation by assuming 

a known container (including its index of refraction), a known liquid and a known gravity 

vector. As the light path is only modified at interfaces, this problem can then be reduced to a 

height estimation problem. For a given container orientation, the surface of the liquid will be 

orthogonal to the gravity vector, and only its height within the container needs to be 

estimated. 

 

Figure 5.6: Illustration of the modeling of liquid and container 
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The corresponding model is illustrated above. As only object surfaces are modelled for 

rendering pipelines, and the respective orientation of the blue surface to the red and green 

surface is known. 

While our preliminary experiments assumed a known liquid, all parameters could in principle 

be optimized. In the illustration below, we demonstrate the feasibility of the index of 

refraction and color liquid estimation. 

 

Figure 5.7: Examples of additional parameters that can be optimized with our 

differentiable rendering process. Top: index of refraction, bottom: color 

 

 

While the proof of concept supports this research direction, further work is needed, and in 

particular, evaluate the reliability of such an approach with real data, as all experiments are 

done by using a rendered reference image instead of a reference image captured. We intend 

to approach this in a similar way as the pose estimation, relying on edge estimation to drive 

the estimation process. Relying on the ability of the robot to act on the scene will also be 

necessary as this enables the capture of the background scene, to be used as an environment 

in the rendering process. The following figure illustrates a potential pipeline to handle the 

liquid fill level estimation.  
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Figure 5.8: Pipeline of the Verification and fill level estimation process 

 

5.2 Geometrical Verification through Multi-view scene collection 
 

As an alternative approach to verification in the context of the TraceBot project, we also 

investigate state-of-the-art reconstruction approaches. Contrary to the work presented up 

until now, this approach requires capturing multiple views of the scene. This can be achieved 

using an in-hand camera, and obtain the camera pose using the arm kinematics. A neural 

radiance field (NeRF) can be trained using that approach to recover the geometry of the scene, 

including the shape of transparent objects, therefore overcoming the limitations of depth 

sensors.  

Knowing the geometry of the scene lets us use depth/normals-based verification methods like 

the ones presented in deliverable 4.1. 

Contrary to single-view depth prediction methods, NeRF is a transductive learning method, 

meaning it is trained on the same set of data that it is evaluated for. This makes it impossible 

for the network to encounter out-of-distribution samples. This makes the network behavior 

more predictable, which is an important property in the context of verification, but comes at 

a high computational cost, and the necessity to capture multiple views. 
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Figure 5.9: Reconstruction of the sterility kit. Left: depth sensor. Right: NeRF. 

Transparent objects geometry is only recovered using NeRF  

 

In particular, we investigated the ability of NeRF methods to produce depth points for the 

canister in 4 scenes, illustrated below. 

 

 

 

Figure 5.10: The five scenes used in the experiments (Top: Can1, Can2. Bottom: Can3, 

Can4, Cluttered) 

 

For each scene, we defined an error threshold of 10 mm (max. per-pixel depth error). All 

pixels with an error higher than the threshold are considered to be outliers. We then evaluate 

the mean depth error over every inlier. NeRF models the scene occupancy rather than the 

geometry directly. As such, we need to threshold that occupancy to obtain a final depth 

prediction. The influence of such a threshold is evaluated. The results are reported in the 

following table. 
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Table 5.1: Mean depth error (mm) / outliers (%) over all views (lowest outlier percentage 

in red). 

Scene Can1 Can2 Can3 Can4 Cluttered 

σ = 3 2.61 / 15% 1.67 / 
8.06% 

4.65 / 
38.04% 

3.37 / 
16.32% 

2.58 / 16% 

σ = 6 2.5 / 13.3% 1.54 / 8.5% 2.93 / 
27.2% 

2.41 / 
13.04% 

2.14 / 
12.59% 

σ = 7 2.48 / 
12.87% 

1.52 / 
8.82% 

2.73 / 
25.95% 

2.24 / 
12.91% 

2.04 / 
12.33% 

σ = 8 2.46 / 
12.57% 

1.51 / 9.2% 2.63 / 
25.58% 

2.13 / 
13.2% 

1.97 / 
12.47% 

σ = 9 2.45 / 
12.4% 

1.5 / 9.62% 2.58 / 
26.1% 

2.06 / 
13.94% 

1.91 / 
12.91% 

σ = 10 2.45 / 
12.35% 

1.5 / 
10.07% 

2.56 / 
27.32% 

2.03 / 
15.1% 

1.87 / 
13.46% 

σ = 11 2.45 / 
12.47% 

1.5 / 
10.56% 

2.56 / 
29.15% 

2.04 / 
16.69% 

1.84 / 
14.1% 

σ = 12 2.45 / 
12.78% 

1.5 / 
11.09% 

2.56 / 
31.43% 

2.06 / 
18.71% 

1.82 / 
14.8% 

σ = 13 2.45 / 
13.32% 

1.5 / 11.7% 2.57 / 
34.01% 

2.09 / 
21.14% 

1.81 / 
15.51% 

σ = 14 2.46 / 
14.11% 

1.5 / 
12.39% 

2.57 / 
36.69% 

2.14 / 
24.02% 

1.8 / 
16.24% 

σ = 15 2.46 / 
15.14% 

1.5 / 
13.17% 

2.57 / 
39.42% 

2.17 / 
27.52% 

1.8 / 
16.93% 

σ = 20 2.49 / 
23.54% 

1.57 / 
18.78% 

2.57 / 
51.45% 

2.19 / 
43.5% 

1.85 / 
19.85% 

σ = 25 2.49 / 
33.85% 

1.7 / 
26.44% 

2.54 / 
59.74% 

2.24 / 
52.67% 

1.93 / 
22.11% 

σ = 30 2.48 / 
42.99% 

1.82 / 
34.99% 

2.53 / 
65.35% 

2.3 / 58.9% 2.02 / 
23.9% 
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We also performed the same evaluation when training the NeRF volume with an additional 

distortion loss, expected to limit the presence of “floaters”, that is area in the volume that do 

not correspond to any real geometry but are created during the training of the field to model 

view-dependent effects.  

 

Table 5.2: Mean depth error (mm) / outliers (%) over all views (lowest outlier percentage 

in red). 

Scene Can1 Can2 Can3 Can4 Cluttered 

σ = 6 2.7 / 7.7% 1.9 / 12.3% 3.1 / 25.2% 2.68 / 
18.7% 

1.99 / 
15.77% 

σ = 7 2.65 / 7.4% 1.86 / 
12.4% 

3 / 24.95% 2.58 / 
18.59% 

1.94 / 
15.7% 

σ = 8 2.59 / 7.2% 1.8 / 
12.56% 

2.9 / 24.7% 2.5 / 
18.62% 

1.91 / 
15.67% 

σ = 9 2.53 / 7.2% 1.75 / 
12.7% 

2.8 / 24.5% 2.43 / 
18.78% 

1.88 / 
15.67% 

σ = 10 2.48 / 7.2% 1.71 / 
12.95% 

2.74 / 
24.4% 

2.38 / 19% 1.85 / 
15.68% 

σ = 11 2.44 / 
7.25% 

1.68 / 
13.1% 

2.67 / 
24.35% 

2.33 / 
19.27% 

1.84 / 
15.7% 

σ = 12 2.41 / 
7.36% 

1.66 / 
13.4% 

2.6 / 
24.34% 

2.29 / 
19.58% 

1.82 / 
15.78% 

σ = 13 2.39 / 
7.54% 

1.6 / 
133.17.67% 

2.54 / 
24.38% 

2.26 / 
19.96% 

1.8 / 
15.88% 

σ = 14 2.37 / 
7.78% 

1.62 / 
13.92% 

2.49 / 
24.48% 

2.23 / 
20.36% 

1.79 / 16% 

σ = 15 2.36 / 8% 1.61 / 
14.2% 

2.45 / 
24.64% 

2.21 / 
20.78% 

1.78 / 
16.16% 
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σ = 20 2.35 / 
10.4% 

1.59 / 
15.7% 

2.3 / 
25.85% 

2.15 / 
23.47% 

1.77 / 
17.14% 

σ = 25 2.38 / 
14.23% 

1.62 / 
17.57% 

2.25 / 
27.6% 

2.13 / 
26.75% 

1.78 / 
18.32% 

σ = 30 2.4 / 19% 1.68 / 20% 2.25 / 30% 2.13 / 
30.19% 

1.8 / 
19.43% 

 

These preliminary results are promising. Further improvements are needed, in particular 

because the absence of texture significantly degrades the performance of neural radiance 

fields, and will be investigated in the next year. The more accurate the depth prediction for 

objects in the scene, the better a depth-based verification will be. 

 

5.3 Preliminary Tube Detection and Modelling 
 

As a preliminary experiment, we evaluated the problem of tube detection and modelling. As 

a first step, we investigated tube detection using classical methods with limited success, as 

the tube used in the sterility testing kit is also transparent, limiting the applicability of such 

methods. We are currently investigating the use of semantic dense correspondences that can 

be obtained using a vision transformer trained in a self-supervised manner. 

As illustrated below, when looking at the potential correspondences between a given point of 

the tube from a source image in a target image, the heatmap of the distance gives promising 

results as it highlights the point of the tube in the target image. 
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Figure 5.11: Example of semantic correspondences obtained with DINO-ViT for the tube of 

the sterility kit 

 

 

Once a rough segmentation has been obtained, it is then possible to use a differentiable 

renderer to optimize the pose of the tube, growing it based on its known profile along the 

point of the pre-segmentation, constraining it to follow a spline. In particular, the clamps, the 

needle and the canister itself constitute important key points in this context, as we need to 

ensure that the tube prediction connects those points. Previous steps of the vision pipeline 

should provide us with a knowledge of the 3D position of such objects in the scene, giving us 

a 3D starting and end point that need to be connected with a spline based on the rough 

segmentation. 

 

Preliminary experiments using markers (see Figure 5.12) to optimize such splines held 

promising results.  
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Figure 5.12: Example of the tube with markers attached to it.  

 

 

5.4 Conclusion and perspectives 
 

We have presented a set of vision methods based on the concept of differentiable rendering 

to verify the information inferred from the scene during the process execution. In 

particular, we have outlined a way to perform a verification of object poses suitable for 

transparent objects or deformable object depending on the exact formulation. We have also 

presented detailed steps to adapt this process for fill level estimation. Differentiable 

rendering enables the incorporation of all existing knowledge into the scene representation 

and compares it directly to the output of the scene’s sensor, or to very simple 

transformations of it (like extracting the edges from the raw output image). As such it is 

well-suited to verification because it does not rely on the representation used to infer the 

object poses, but a low-level information closer to the sensors.  



TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089) 

 

 

  

 

42 

  

 

 

D4.2 Initial tactile, visual and functional task verification automation 

6 Functional Task Verification  
 

In the previous sections, you have certainly heard about several verification modalities (i.e., 

visual, tactile), still a higher-level verification modality should ultimately decide whether the 

actions of the robot were successful, whether it is or was even correct to perform an action 

within a context and whether the equipment are working properly. We term this as functional 

verification and logically reduce it to making the robot understand its actions and the desired 

effects. In this section, we present the initial work in this regard in terms of architecture, 

implementation and proof concepts. 

 

6.1 Overview 
 

Functional verification is a higher-level verification modality that should ultimately decide 

whether the actions of the robot were successful, whether it is or was even correct to perform 

an action within a context and whether the equipment are working properly. As you can see 

on the picture below, we digest the detailed description and specification of the TraceBot use 

case elaborated in the consortium into a formal ontology that establishes the fundamental 

truths about objects and tasks in the world (see D5.1-2 from WP5 for more details). Then, we 

enrich the actual state of the world also known as context with information coming from 

different verification sources, and combine this context with the world ontology to answer the 

three questions below: action feasibility, action success and equipment functioning. In this 

stage, the verification consists essentially in comparing the actual state of the world (context) 

with the expected preconditions and post-conditions of the targeted action. In the case of 

equipment testing (e.g., holding capacity of the drain tray), the process is sometimes 

augmented with the so-called verification-specific actions (e.g., pushing the canister a little 

bit after insertion), which are illustrated in Table 3.1. This being said, we therefore 

conceptually reduce the problem of functional verification to understanding the 

preconditions and postconditions of actions and deciding given a context if they are feasible 

or were successful. Another ongoing application of this module is the automated context-

aware online planning of complex actions from primitive actions which is actually conducted 

in WP3. 
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Figure 6.1: An Overview of functional verification schema 

 

Up to this milestone, we formalized the problem of functional verification, and provided the 

fundamental software and data models (i.e., part of the Traceable Semantic Twin, TST, 

developments in WP5) for solving the problem. Furthermore, a query language (see D5.2), 

encapsulated into ROS actions, was also provided to the rest of the TraceBot's robotic system 

as an interface for submitting functional verification tasks to the reasoning system (i.e., part 

of the TST). Finally, the feasibility and the success verification of the grasp-canister action 

was illustrated. 

 

6.2 Knowledge Representation 
 

In this section, we present the knowledge representation that we achieved for the sake of 

performing functional verification, which is essentially made up of symbolic knowledge also 

known as world ontology about the agents, objects, actions and states as well as the grounding 

of the corresponding symbols into a subsymbolic representation of the environment for a 

better reasoning about robot actions. 

 

6.2.1 World Ontology: Representation of Objects, Actions, States 

 

We firstly digested the detailed description and specification of the TraceBot use case 

elaborated in the consortium [6] into a formal ontology (extension of SOMA [7]- Socio-

physical models of activities) that establishes the fundamental truths about objects in the 

world.  Figure 6.2 shows how objects are described in the ontology in OWL (Ontology Web 
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Language). The figure illustrates the abstract properties of a canister (i.e., color, shape, 

material) as well as concrete properties (i.e., size). 

 

Figure 6.2: Detailed representation of objects in the ontology 

 

Then, we represented actions in the ontology in terms of plans and parameters such as shown 

by Figure 6.3. Note that such description is not only fundamental to reason about the 

preconditions and postconditions of actions in terms of states but also help to diagnose 

detected failures of long-term actions (e.g., It was an intermediate action skipped that causes 

failure). Figure 6.3 illustrates for instance the representation of a FitInsertableToInsertee 

action, which is a generic action that consists in inserting a so-called insertable object (e.g., 

canister) into another so-called insertee object (e.g., drain tray). Such a schema can then be 

used for any other action with similar plan schema. The red boxes show the intermediates 

actions that make up the plan and their positions in the plan whereas the green boxes show 

how the parameters are passed from the calling action to the intermediate actions. 
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Figure 6.3: Description of actions in the ontology 

 

Very important regarding such an ontology with respect to functional verification was the 

formalization of action pre- and post-conditions, which represent the necessary conditions 

and effects of a given action. In order to formalize the pre- and postconditions of actions, we 

introduced the concept of world state, which is merely a set of fluents, where a fluent is a 

temporal predicate about the state of scene entities. For instance, the fluent 

Grasped(Canister_Id, t) is true iff the canister Canister_Id was grasped by the robot at time 

t. Fluents differ therefore from other object properties (e.g., color, category, ...) in the sense 

that they are dynamic (e.g., broken, pose, appearance, ...).  And whereas the precondition of 

an action is a state of the world in which the action is feasible, the post-condition is a state 

that reflects the effects of the action. This being said, Figure 6.4 illustrates the modeling of 

action pre- and post-conditions in the ontology using SWRL (Semantic Web Rule Language) 

on top of OWL for expressiveness reasons. 
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Figure 6.4: Description of action pre- and post-conditions in the ontology 

 

This grasp/grab precondition definition states that (1) and (8) if ?ParamState is a state 

containing no grasped objects (expressible with OWL), (2) ?X is a graspable object, (3) ?Act 

is a grab action, (4) ?X is a parameter of ?Act and (5) ?X is the first parameter, (6) 

?ParamFluent is a fluent (i.e., time-variable property) in ?ParamState, (7) ?ParamFluent is 

about ?X, (9) ?ParamFluent defines the property Free_graspable (i.e., true if the concerned 

object is not actually grasped), and (10) ?ParamFluent has the value true, then (11) 

?ParamState is a precondition of ?Act and ?Act is therefore feasible. 

 

6.2.2 Extending World Ontology with Subsymbolic Representations 

 

Beyond purely symbolic reasoning for performing functional verification are physical and 

imagistic reasoning which are simulation-based reasoning techniques capable of escaping the 

complexity (e.g., combinatorial explosion of rules and reasoning paths) and limitations (e.g., 

lack of granularity) of rule-based reasoning while incorporating aspects of human 

commonsense (I.e., physics, imagination, causality) in a much more effective and efficient 

manner. For this reason, we also advanced the extension of the symbolic knowledge 

representation of the subsymbolic representation of the world, also known as DT (Digital 

Twin), which targets a physico-realistic replication of the real world. As you can read more 

about this in D5.2, the DT is able to emulate the real robotic processes for the scenario of 

canister insertion (MS1) and needle insertion (MS2). These advancements are illustrated by 

Figure 6.5.  
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Figure 6.5: Extending world ontology with digital twin of the world 

 

6.3 Process Context: NEEMs as grounded activity traces 
 

Another core input for functional verification is the process context, which describes what is 

going on in the process (e.g., which object is where, what happens, which objects are involved, 

how does the scene looks like, sounds like,...). Notice that such data have been described as 

NEEMs (Narrative-Enabled Episodic Memories) in this project and emanate themselves 

from the grounding in the ontology by WP5 of robot activity traces collected by the WP4-

tracer.  Regarding this collection of NEEMs, we undertook two fundamental actions namely 

the grounding of skills from WP3 into the ontology and the implementation of a query 

language (see next sections but deeper in D5.2) to generate and record the NEEMs from robot 

activity traces. The tables below illustrate the grounding of skills into ontology. This 

grounding will allow not only to understand the actions (i.e. ask about/Verification) that the 

robot is performing but also record what the robot is doing (i.e., tell about/NEEMs/Context). 

 

Table 6.1: Initial sequence of actions to execute from the skill engine to insert canister into 

drain tray 

-MoveHome                     Destination/Trajectory as Parameter 
-Locate                              Canister as Parameter 
-Verify                               Canister(Id) as Parameter 
-Grab                                 Canister(Id) as Parameter 
-Lookup                            Grasp Canister Info (Canister (Id) as Parameter 
-Compute                         Grasp Trajectory (Task+Effectors + Pose as Parameter) 
-Configure                        Grasp (Task + Grasp Type as Parameter) 
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-Execute                            Grasp Trajectory (Effectors + Trajectory as Parameter) 
-Lift                                    Object (Trajectory as Parameter) 
-Compute                          lift trajectory (Task, Effectors, Canister(Id), Destination as Parameter) 
-Lookup                             Insertion Canister Pose (Object Type, Target action, as Parameter) 
-Execute                            Trajectory to move canister to tray (Canister Id, Destination as Param) 
-Move towards finished 
-Insertion   
-Release 
-Retract 

 

After grounding the skills in the ontology, the grounded sequence of skills is shown in Table 

6.2. 

Table 6.2: Grounding of the action sequence in Table 6.1. for inserting a canister into the 

drain tray 

- http://www.ease-crc.org/ont/SOMA.owl#ParkingArms 
- http://www.semanticweb.org/smile/ontologies/2022/2/TraceBot#TraceablePinkingUp (Canister) 
- http://www.ease-crc.org/ont/SOMA.owl#SettingGripper 
- http://www.semanticweb.org/smile/ontologies/2022/2/TraceBot#TraceableLocating (Canister) 
- http://www.semanticweb.org/smile/ontologies/2022/2/TraceBot#PlanningGrasp 
- http://www.ease-crc.org/ont/SOMA.owl#Reaching (Approach Pose) 
- http://www.ease-crc.org/ont/SOMA.owl#Reaching (Grasp Pose) 
- http://www.ease-crc.org/ont/SOMA.owl#Grasping (Canister) 
- http://www.ease-crc.org/ont/SOMA.owl#Lifting (Approach Pose, Canister) 
- http://www.semanticweb.org/smile/ontologies/2022/2/TraceBot#TraceableInserting (Canister, DrainTray) 
- http://www.semanticweb.org/smile/ontologies/2022/2/TraceBot#TraceableLocating (DrainTray) 
- http://www.semanticweb.org/smile/ontologies/2022/2/TraceBot#PlanningInsertion 
- http://www.semanticweb.org/smile/ontologies/2022/2/TraceBot#PlanningRetraction 
- http://www.ease-crc.org/ont/SOMA.owl#Delivering (Canister, DrainTray) 
- http://www.ease-crc.org/ont/SOMA.owl#Inserting (tilted) (Canister, DrainTray) 
- http://www.ease-crc.org/ont/SOMA.owl#Orienting (Canister) 
- http://www.ease-crc.org/ont/SOMA.owl#Releasing (Canister) 
- http://www.ease-crc.org/ont/SOMA.owl#Retracting 
- http://www.ease-crc.org/ont/SOMA.owl#ParkingArms 

 

 

6.4 Interfaces as Formal Query Language 
 

In order to generate and record NEEMs in the knowledge base as well as sending functional 

verification tasks to the reasoning system, a formal query language has been implemented 

and presented in D5.2. Basically, queries in this language can be reduced to two great 

categories of interactions namely the TELL/ASK queries. The TELL-queries allow external 

agents to enrich (prefixed with kb_project ) the knowledge base with information or to 

retract/delete information from the knowledge base (prefixed with kb_unproject). To modify 

facts in the knowledge base, the previous fact is retracted and then the new one is inserted. 

The other query category is the ASK query which allows to retrieve or construct new facts 

from the knowledge base. These queries are prefixed by kb_call. These prefixes are then 

followed by a specification of a set of parameterized predicates which should be fulfilled at 

the end of the query execution. Imagine that the robot would like to memorize the course of 
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its activity and then reason about the success of the involved actions, this would take place as 

follows: 

 

// Creating an action grasping 

kb_project( 

[new_iri(Action, tracebot:'Grasping'), is_action(Action)]  

). 

 

// id of the created action is stored into Action 

Action = tracebot:'GraspingX1GH07' 

 

// an object of Type canister is created and set as parameter of the created action 

kb_project([  

new_iri(Object, tracebot:'Canister'), is_object(Object),  

has_parameter(tracebot:'GraspingX1GH07', Object)  

]).  

 

// id of the created object is stored into Object 

Object = tracebot:'CanisterH8YK23' 

 

// id of the created object is stored into Object 

kb_call( [ is_successful(tracebot:'GraspingX1GH07')] 

 

As you can see from the above interactions with the reasoning system, an action of type 

Grasping is created and the unique id of that action is stored into the variable Action. Then, 

an object of type Canister is also created and the unique id of that canister is stored into the 

variable Canister. After, this, the created canister is set as the parameter of the created 

grasping action. And finally, the reasoning system is tasked on the success or feasibility of 

that grasping action. Note that before actually tasking the reasoning system, a lot more 

contextual information about the canister (e.g., pose, material, container, ...) and about the 

grasping action (e.g., effectors) could be provided to the reasoning system in order to enrich 

its knowledge base.  
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6.5 Symbolic and Simulation-Enabled Reasoning for Verification 
 

In this section, we demonstrate verification of an action feasibility based on symbolic 

reasoning and then introduce our achievements in leveraging physico-realistic simulations to 

enable advanced reasoning with respect to functional verification. 

 

6.5.1 Symbolic Reasoning for Verification 

 

At the core of the symbolic reasoning engine is KnowRob presented in D5.1 and D5.2, which 

itself builds on top of first-order logic reasoning engine Prolog.  

Imagine that we described the precondition of the grasp action (precondition:Grab) in the 

ontology such as illustrated by the Figure 6.4 and 6.6. 

 

Figure 6.6: View of action post- and pre-conditions from Protégé Software 

  

 

Then an object of the class Canister (scn1FrG_Canister) is detected in the scene and asserted 

in the knowledge as shown by Figure 6.7. 
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Figure 6.7: Assertion of detected canister into knowledge base 

 

Beside the above information about the detected canister, the tactile verification tells us that 

there is nothing in the robot gripper which is then inserted in the knowledge base through a 

fluent as shown by Figure 6.8. The fluent scn1FrG_Fluent is about the above detected canister 

and is true if the concerned object is not in the robot gripper, hence its name Free_graspable. 
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Figure 6.8: Enrichment of process context with low-level verification information 

 

Once the fluent is created, it is attached as being part of the current state CurrentState as 

shown by Figure 6.9.  

  

Figure 6.9: Associating a fluent to a world state 
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Then, before trying to grasp the detected canister the robot checks if the action is feasible in 

the given context and tasks therefore the reasoning system. For completing this task, the 

reasoning system creates an instance of the grasp action scn1FrG_Grab and sets the detected 

canister as its parameter. This is illustrated by Figure 6.10 below. 

 

Figure 6.10: Asserting an action and its parameters in the knowledge base 

 

After these above assertions, the reasoning system checks if the current state of the world 

described by CurrentState is a precondition for the grasp action given its parameters. As 

shown by Figure 6.11, the answer is yes since the current state fulfils all the requirements of 

the grasp action namely that the target object is detected and not yet in the robot gripper 

(Note that this can be revised in dual arm manipulation settings) 
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Figure 6.11: Deciding an action feasible in a given context 

 

Finally, we suppress the information provided by the tactile verification to enrich the context, 

which actually consists in suppressing the fluent scn1FrG_Fluent from the knowledge base 

such as depicted by Figure 6.12. 

 

Figure 6.12: Retracting some context information from the knowledge base 
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This impoverishment of the knowledge base causes then the reasoning system to be unable 

to decide on the feasibility of the grasp action. Note that the reasoning system is working 

under the open-world assumption and this decision would be a radical “unfeasible” if it was 

under a closed-world assumption. This undecidability is shown by the Figure 6.13 below. 

 

Figure 6.13: Undecidability of action feasibility under lack of context information from the 

knowledge base 

6.5.2 Simulation-Enabled Reasoning for Verification 

 

Notice that despite the above described capabilities of the symbolic knowledge representation 

and reasoning in accomplishing functional verification, this only holds at a very abstract level 

of task consideration (e.g., actions as sequence of symbols) and verification (e.g., binary 

decision: success vs failure). And this being said the consequences are fourfold. (1) First, given 

that the robot operates in a complex dynamic environment, the robot should not only be able 

to verify the success of its action given the observed effects but rather also anticipate such 

effects in order to avoid undesirable ones. Note that this requires the robot to maintain fine-

grained models of the environment (e.g., friction of the table) as well as models of actions 

(i.e., mass of the canister for grasp action) in order to be able to answer questions such as 

what will happen if a half-full canister was to be inserted into the drain tray with a certain 

force. (2) Secondly, notice also that even if the canister has to be pushed a little bit after 

inserting it to check if it was well inserted, the force used to perform the push is crucial though 

it is not taken into account in the symbolic reasoning, which then leads to some test 

vagueness. In this case the system should also be able to estimate the world and action 

parameters that explain certain expected or observed effects (How/Why happen). With this 

capability the robot can reason about fine-grained pre-conditions of actions. (3) 
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Furthermore, with such faithful models of the world, the robot would not only be able to 

anticipate and explain the world state through emulation but rather also obtain a higher-level 

rendering of it so that a straight-forward comparison between the expected and the observed 

effects of an action are possible. Finally, notice that any attempt to capture such faithful 

models of the world symbolically for the sake of accomplishing the points (1-3) will lead to an 

intractable system.  While the capabilities (1-3) are usually referred to as physical reasoning, 

the capability (3) is referred to as imagistic reasoning. Regarding this analysis, we recently 

designed and published a scene understanding system through process emulation based on 

embodied probabilistic simulations, coined as NaivPhys4RP (Naïve Physics for Robot 

Perception) [8], for anticipating and explaining the states and observations of dynamic 

worlds in a transparent and causal manner. Robot Perception because it is an established 

concept for scene and self awareness and naïve physics because the ultimate goal is to 

intuitively capture the physics of the environment which ultimately determines the world 

state. Figure 6.14 below illustrates the core principles of NaivPhys4RP.  

 

 

Figure 6.13: Anticipating and explaining the states and observations of the world through 

cognitive emulation for supporting functional verification. 

 

We formalize the problem addressed by NaivPhys4RP in four steps. (i) We model the world 

state, as shown by Figure 6, as a Situated (i.e., take place in a context) Partially-Observable 

(i.e., only partial sensor data) Hidden (i.e., not directly accessible information) Markov 

Process (i.e., state dependency) (SPOHMP) that evolves through the physics that scene 

entities (e.g., objects, robots, sensors) undergo. The context is supposed to catch other 

domains of the commonsense that drive the physics such as intentions, utility and 

functionality. Actions are already explicitly modeled. (ii) We model the hidden state a.k.a. 
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belief of the SPOHMP with the semDT (Symbolic knowledge base + digital twin), a photo-

realistic and physics-faithful replication of the world grounded in the world ontology for 

semantics. This makes the internal world representation suitable for emulating the SPOHMP. 

(iii) Then, we regard perception as taskable through queries and these perceptual queries are 

clustered into anticipatory (i.e., consequences given causes) and explanatory queries (i.e., 

causes given consequences), that are abstracted as the bayesian/ markovian inference tasks. 

However, note that an actual accurate and rich belief of the world state is the informational 

source for answering these questions. Such a belief is continuously filtered over time through 

emulation of the SPOHMP. (iv) Finally, we efficiently implement the four main operators of 

the rao-blackwellized particle filter, however modified to five operators, which is a generic, 

practical and constructive (i.e., explainability) approach to simultaneously emulate the 

SPOHMP and address the bayesian inference tasks just mentioned, through embodied, 

physics- faithful, photo-realistic, probabilistic, partial and ontology-grounded simulations. 

Notice the genericity of the model as it also considers fundamental physical parameters of the 

world necessary for useful simulation and commits to estimating them.  

This formalization is summarized by the following system of equations (S1): 

 

 

 X, is the world’s hidden state (e.g., a semDT)  

 Z, is the object/world observation (e.g., RGBD images)  

 U, is the motion control (e.g., joint values, forces)  

 C, is the process context (e.g., object, state and task knowledge)  

Note that i, t, [.] and ∼  respectively denote the particle index, the time index, optional priors 

and the argmax probabilistic sampling. Note also that we demonstrated in D5.2 how the 

above reasoning tasks (S1) can be formulated in the query language presented in the section 

6.4. 

Finally, the full implementation of NaivPhys4RP as well as their integration together with the 

symbolic reasoning engine in the traceability framework constitutes the object of our next 

developments. 
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6.6 Conclusions and Perspectives 
In this section, we presented in an argumentative manner a methodology for addressing 

functional verification in the robotic realization of TraceBot scenarios, followed by a design 

and an initial implementation of a framework, the basics of the framework integration in the 

TraceBot robotic system, and proofs of concept that realizes this functional verification. 

Foremost, we defined functional verification as the ultimate check of action success, 

feasibility and proper equipment functioning, which was then reduced to making the robot 

to understand at an abstract level (e.g., world state in terms of physical qualities) as well as 

at a sufficiently fine-grained level (e.g., world state in terms of physical quantities) the pre-

conditions (i.e., world state before action execution) and post-conditions (i.e., world state 

after action execution) of the robot actions. For verifying the proper functioning of equipment 

in such a formalism of functional verification, we showed the integration of additional 

verification-specific actions in the TraceBot robotic process. The proposed framework for 

addressing this problem consists then in maintaining a hybrid model of the world, namely an 

ontology of the world (symbolic) grounded in a digital twin  of the world (faithful physico-

realistic replication of the world) which then gets instantiated during the real or imaginary 

robotic execution of TraceBot scenarios and enriched by the outputs of low-level verification 

modalities (e.g., visual, tactile) to decide on an action success, feasibility, or proper 

functioning of equipment. For integrating the functional verification framework in the 

TraceBot robotic system, a formal language has been proposed as interface. 

Given that the execution of the TraceBot project is organized around the implementation of 

TraceBot use cases, so is the implementation of the functional verification framework. The 

ontology as abstract knowledge about objects and foremost actions (e.g., plans, parameters, 

pre-conditions, post-conditions) has been accomplished for the first use case (inserting 

canister in drain tray) and this continues for the actual use case (inserting needle in the bottle 

cap). The digital twin with the necessary physico-realism (e.g., objects and robot actions) has 

been accomplished as well. The interfaces for basic functional verifications (e.g., was 

insertion successful, is insertion successful, what happen after placing the canister on the 

workbench) in these use cases (canister and needle insertion) based on hybrid reasoning 

(ontology- and digital twin-based) have been written as well. In this regard, the object of our 

next workloads will be the accomplishment of the framework for the second use case (i.e., 

needle insertion) and the continuous development and integration of the framework with 

respect to the target TraceBot use cases. Note that the focus is also actually laid on verification 

during the real robotic process execution. However, in the long term as explained in section 

6.5.2, this verification would have to also take place during imaginary robotic process 

executions for anticipation reasons in the complex dynamic world.  
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7 Deviations from the workplan 
 

No notable deviation from the workplan was detected so far. 
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8 Conclusion and perspectives  
 

In this report, we have explored three different modalities for robot task verification: tactile 

verification, visual verification, and functional verification. Our findings show that each of 

these modalities has unique benefits and limitations, and that a combination of all three may 

be necessary for comprehensive task verification. 

In the tactile verification section, we demonstrated the effectiveness of using hybrid tactile 

sensors to verify the success or failure of various tasks, including object presence in the 

gripper, object slip verification, clamp closure verification, and needle insertion verification. 

We have developed multiple algorithms based on machine learning and analytic methods, 

and achieved success rates higher than 95%. Our future work will focus on integrating these 

modules into the global system via ROS interfaces and fine-tuning the models on the final 

setup to ensure even more robustness and versatility. 

Moving on to the visual verification section, we presented a set of vision methods based on 

differentiable rendering to verify the information inferred from the scene during the process 

execution. Our approach enables the incorporation of all existing knowledge into the scene 

representation and compares it directly to the output of the scene’s sensor or to simple 

transformations of it, making it well-suited to verification. We have outlined a way to perform 

verification of object poses suitable for transparent or deformable objects and provided 

detailed steps to adapt this process for fill level estimation. 

The functional verification section of our report outlines a higher-level verification modality 

that decides whether the actions of the robot were successful, whether it was even correct to 

perform an action within a context, and whether the equipment is working properly. We have 

formalized the TraceBot use case into a formal ontology that establishes the fundamental 

truths about objects and tasks in the world, and then enriched the actual state of the world 

with information coming from different verification sources to answer the questions of action 

feasibility, action success, and equipment functioning. 

To conclude, our work highlights the advantages and limitations of different verification 

modalities. By combining multiple modalities, we can achieve more robust and 

comprehensive task verification, paving the way for safer and more efficient robotic systems. 

Moving forward, there are several important steps that need to be taken in order to advance 

the research presented in this report. Firstly, the various verification modalities that have 

been developed and tested, namely tactile, visual, and functional verification, need to be 
integrated into a single cohesive system. This will allow for the combination of all the different 

senses and logic, in order to improve the overall accuracy and success rate of the system. 

Additionally, the models developed for each verification modality will need to be fine-tuned 
and optimized for the final setup, and the system will need to be further tested and validated 

on a larger scale. Furthermore, the functional verification framework will need to be fully 

implemented and integrated into the TraceBot robotic system, and the ontology and digital 
twin will need to be continuously updated and refined for each TraceBot use case. Finally, as 
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noted in the report, there is a need for the system to be able to perform verification during 

both real and imaginary robotic process executions, which will require further research and 
development. 
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