Traceable Robotic Handling of Sterile Medical Products

BOT

Software models (Final): Final
definition of the software

interfaces and software creating
the Audit Trail

Deliverable 5.3

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089), 2021-2025

D5.3 Software models (final)

Deliverable Title D5.3 Software models (Final): Final definition of the
software interfaces and software creating the Audit Trail

Deliverable Lead: University of Bremen (UOB)

Related Work Package: WP5: Traceable Semantic Twin: Planning, reasoning, Audit
Trail

Related Task(s): T5.1: Definition of the domain process structure and taxonomy

T5.2: Replication of medical lab environments into Traceable
Semantic Twin Knowledge Bases for Reasoning

T5.3: Traceability-aware process (re-)planning, reasoning and
regulatory digital audit trail

T5.4: Learning and reasoning about recorded process
memories for accessible task-context information

Author(s): Prof. Michael Beetz
Dissemination Level: Public

Due Submission Date: 30/11/2023

Actual Submission: 29/11/2023

Project Number 101017089

Instrument: Research and innovation action
Start Date of Project: 01.01.2021

Duration: 51 months

We are describing our final definition of the interfaces that are

Abstract used to interact with the hybrid knowledge representation and
reasoning components. This also includes the simulation aspects
in the Semantic Digital Twin and descriptions of the employed
models for reasoning tasks.

- Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

Versioning and Contribution History

D5.3 Software models (final)

Version Date Modified by Modification reason
v.01 14.11.2023 Prof. Michael Beetz (UOB) | Ready for internal revision
V.02 26.11.2023 Prof. Michael Beetz (UOB) Revised version read for submission

- Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

Table of Contents

Versioning and Contribution HiSTOrycceeiie i e 3
Table Of CONEENESiiiiiiiiciiei 4
1 EXECULIVE SUMMAIY ..uiiiiiiiiiiiii ettt s e e e s s e e s s s e a e e aa e s e s e a s e an e e sa s e a s e nn e e nnsennsennss 5
2 10 oo 11 o o o 6
G T 1 T~ a1 o = 0 =Y PP 8
3.1 Reasoning FrameWOIK OVEIVIEWiiuuiiiiiiiei et et s s e st s s e a s s s s e s e a s e ra s en s ennsennanan 8
3.2 A Formal Query Language as Interface with the TST in TraceBot Robotic System................ 9
3.2.1 Loading distributed ontolOZIes........cccueieiuieieiiieieiieeciee et re e e e 9
3.2.2 Unload ONtologY (WPE) ...ececciiieiieeeieieiieeeiiteesiteeesteeesaeessaeseseseesssseessssesssssessssesssseesnns 10
3.2.3 Percept Grounding into Ontology (WP5)ccouiiriiiiiinieiieee et 10
3.2.4 Handling articulated and compound objects (WP5)cccceirerrieniiiniirieeeneeeeeeeeeee 11
3.2.5 Retrieval of common poses for grasp and motion planning (WP5)ccccceeveerveernvueenns 12
3.2.6 Retrieval of common object properties (WP5)ccceereeiiieniieniinnieereeneeeeeeeeee e 13
3.2.7 Recording of Neem Narratives and Experiences (WP5)cccceeeveeeeieeeeieesseeeeneeeesineennns 14
3.2.8 Automated Planning and Execution of Verification Tasks (WP4)ccccoveeevveeevrveescnnens 17
3.2.9 Audit Trail Generation (WP5)eeiiiieeeieirieeeeeeeeeeeireeeeeeeeeeeseernreeeeeeeeesessnsssessseeesssennnns 22
3.3 Simulation-enabled reaSONiNgccceuuuiiiiimenieieeeea e errra e e e e e e e e e e e eee 23
3.4 Physical Reasoning based Embodied Probabilistic Simulations..........c...ccooviiiiiiiiiininns 26
3.5 Perception EXECULIVE......ccuuiiiiiiici i 32
4 Deviations from the WOrKPIaNc...i i e e e e e eees 37
SR o 3T 1o o 38
6 REEIENCES....ciiiiiiiiii et 39

m Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)
1 Executive Summary

This document serves as an extension to our previous deliverable 5.2 which laid out the basic software
interfaces and simulation aspects as developed by the end of 2022. This deliverable incorporates key
modifications aimed at addressing new and more complex use cases.

We offer a comprehensive interface description crucial for the interaction between the components
developed in Work Package 5, primarily focusing on the reasoning apparatus, and other integral
modules of the TraceBot ecosystem designated for the usage on the real world demonstrators of the
project. The provided interfaces to the simulation aspects in our Semantic Digital Twin (semDT) and
the foundational symbolic knowledge representation forms the main entry to our reasoning
functionality.

One significant addition in this document is the introduction of the audit trail interfaces as well as the
interfaces to the verification framework whose outputs are essential in the audit trail, a component
essential for generating audit trails, ensuring transparency, traceability, and accountability in all
operations. Another important enhancement is the handling of compound objects - compositions of
multiple objects potentially attached to or removed from each other during task execution.

The key components are presented at a functional level, highlighting the expected inputs and
anticipated results. We have structured the description into the primary building blocks focusing on
knowledge representation & reasoning, simulation-based reasoning, physical reasoning, and
imagistic reasoning in the perception executive. These aspects are articulated in a query-answering
scheme, bridging use case specific reasoning tasks to the capabilities provided by the components of
Work Package 5.

m Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)
2 Introduction

In the rapidly evolving landscape of robotics, one key determinant for real world success and
adaptability is the deployment of robust knowledge representation and reasoning systems. These
systems, at their core, empower robots to process, interpret, and react aptly to complex environmental
configuration and tasks. In the context of TraceBot, such a system must enable the robot to model
knowledge about the task and its related objects, but also provide means to subsymbolically model
the desired effects of the robots' actions. To combine this functionality and enable traceability, we
develop a hybrid knowledge representation and reasoning system which is the key component for the

reasoning based on semantic digital twins and symbolic knowledge.

In this report, we finalize our definition of the interfaces and software models. We do this by
describing our additions and changes with respect to the previous Deliverable 5.2, which was defined

as a first iteration of the description of our system.

Beginning with an analysis of developments since the last deliverable, we identified that
enhancements were needed in our software models and their associated interfaces to cope with the
challenges that revealed when integrating all the software components of the real world
demonstrators of the project. These revisions were not arbitrary; they have risen from the project's
ongoing demands and the investigation of additional use cases in the domain of sterility testing. Many
of the changes were largely addressed by adapting the software models instead of the interfaces, to

ensure continued compatibility with the other TraceBot components developed against our services.

Building upon this integration-driven approach, we introduced a novel model that improves the
constraining of one object to another. Such a model is important when dealing with compound
objects. To illustrate, consider the scenario of managing a needle with its cap attached to a fixture.
The needle always comes from the bag of consumables with a cap attached, which will be removed
during the process. To improve the reliability of the grasping of delicate needle, the consortium has
used fixtures during development to place the needle in a well-graspable pose. This demonstrates that
compound objects (e.g. needle with cap), can also be constrained to other objects in the environment.
The importance of this functionality became clearly evident during the system integration phase and

led to an improved handling of compound objects in our hybrid system.

Large effort was also spent on the improvement of the software model for robot simulation, necessary
to update the semantic digital twin of the system in realtime, independent of the employed robot

platform of the consortium.

m Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

Compared to the previous deliverable, we substantially extended the knowledge representation and
reasoning capability of our framework. This added functionality does not only facilitate the creation
of detailed audit trails but also empowers the system to introspectively reason about the outcomes of
its task executions. Introducing this capability required us to not only consider the whole skill process
driving the execution, but also the modalities of verification provided by the individual components

of all partners.

In addition to the previous enhancements, we also proposed a new underlying model of our
perception executive to handle differing perception tasks more flexibly. With the inclusion of a state-
of-the-art task execution model, our robotic system can now effortlessly change between intricate
imagistic reasoning tasks as well as common perception tasks, such as object detection. This

integration ensures a generalized approach to support diverse task requirements.

All of the changes mentioned above led us to new, integrated demonstrations of the TraceBot robots
with our digital twin technology. A recent video recording of these demonstrations can be found here

https://ai.uni-bremen.de/tbintegrations3

m Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

https://ai.uni-bremen.de/tbintegration53

D5.3 Software models (final)
3 Reasoning Framework

In this section, we briefly situate the reasoning framework in the TraceBot robotic system and provide
a revision of the interfaces between the framework and the rest of the system, initially defined and
presented in the previous deliverable 5.2.

3.1 Reasoning Framework overview

Knowledge Representation & Reasoning

question answen.ng WPS

wP3

Process Master

Skills Assertion and

& reasoning query

Action

Motion plan

Result

Tracer

Perceive

WP4/5 WP2/3

Perception Action
Executive Executive
f Robot experience

\ J

Robotic System

Figure 1 Overview of the interaction scheme between the different components in the TraceBot
ecosystem, highlighting the connection between the robotic system and the digital twin (shown
in the circle on the right).

As you can see from the architecture Figure 1 above, the reasoning framework acts as an information
provider to other modules of the system for the successful completion of the TraceBot processes. The
overall conceptual framework for the knowledge representation and reasoning system in TraceBot,
also termed as Traceable Semantic Twin (TST), was presented in the former deliverable 5.1. In
deliverable 5.2, we defined and proposed an initial version of the interfaces between the reasoning
framework and the rest of the system. It mainly consisted of a logical query language that allows to
tell and ask for any knowledge, be it symbolic, subsymbolic, procedural, declarative, episodic or
semantic to the reasoning framework. However, as we get deeper into the development of the
TraceBot robotic system, there starts to appear a clear subset of the proposed language that
encompasses the set of queries circumscribing the necessary and concrete interfaces so far. In this
section, we present this set of queries in terms of inputs, outputs, goals and demonstrations. We
organize the presentation of these interfaces into two sections for the sake of simplification. In the
first section, we present the top-level (i.e., less details) queries covering the whole spectrum of
interactions between the reasoning framework and the rest of the TraceBot robotic system. Then, we
present in a second section more detailed queries mostly dedicated to specific simulation and
reasoning processes that are encapsulated by some top-level queries.

Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

3.2 A Formal Query Language as Interface with the TST in TraceBot Robotic
System

In order to ease the understanding and use of the developed interfaces, especially in the robotics
community, we wrapped them within ROS* as action interfaces. This being said, the interfaces
exposed below are also compatible with and can be understood in the ROS terminology.

3.2.1 Loading distributed ontologies

Any reasoning task takes place within the frame of an ontology, which itself describes the set of
fundamental truths that hold for a certain domain. This means, an affirmation can be true according
to one ontology and false according to another. This being said, it is essential to provide a mechanism
to dynamically load the ontology of interest into the reasoning framework. On the other hand, it might
be difficult to build a sufficiently rich ontology from scratch, hence the necessity to combine multiple
existing ones: we talk about distributed ontology. This is achieved by loading the ontologies one after
the other.

:~$ rostopic pub /tracebot knowrob load/goal tracebot msgs/KBLoadOntologyActionGoal "header

seq: ©
stamp:

S Processing goal ...
nsecs: ©

FamaNat Loading ontology from: tracebot-knowrob ontology/TraceBotOntology.owl

goal id: [INFO] [1699449746.855863244]: detected "TraceBotOntology" ontology version 16@0.0.

stamp: Loading ontology was successful
secs: 0

nsecs: ©
Yds
goal:
package: 'tracebot-knowrob'
relative path: 'ontology/TraceBotOntology.owl'"
2ubllsh1ng and latching message. Press ctrl-C to terminate

$ rostopic echo /tracebot knowrob load/result
header:
seq: 1
stamp:
secs: 1699449746
nsecs: 857864856
frame id:
status:
goal id:
stamp:
secs: 1699449746
nsecs: 852722644
id: "/tracebot knowrob node-1-1699449746.852722644"
status: 3
text: o7
result:
status: True

Figure 2: (a) the query with info about ontology file location, (b) success of the ontology load,
(¢) confirmation of loader.

1 ROS stands for Robot Operating System

m Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

Load_Ontology(ontology file_path). This interface allows to load a specific ontology located at
ontology_ file_path into the reasoning engine. Actually, it supports ontology formatted within the
well-established OWL (Ontology Web Language). Within an .owl file, knowledge is stored in the form
of triple triple(subject, predicate, object). e.g.,, triple(Canister, subclass_of,
Container) to state that a canister is a subclass of container. Note that this is an infix representation
of the triple which can also be written in the prefix form as subclass_of(Canister, Container).
And to load the whole .owl file, the triples are basically projected into the reasoning system one after
the other using the more fundamental assertion kb_project (subclass_of(Canister,
Container)). the loading returns true if successful and false otherwise. This interface is
demonstrated in Figure 2.

3.2.2 Unload Ontology (WP5)

KB_Reset (namespace). Once that the ontologies of interest can be loaded into the reasoning engine,
it is important to be able to unload undesired ontologies from the engine. We then defined this
interface that takes as parameter the namespace of the target ontology for instance
http://www.ease-crc.org/ont/SOMA.owl and retracts from the knowledge all the triple facts that
involve such namespace. Note that the identification of any concept in an ontology is prefixed by the
namespace of that ontology, e.g., http://www.ease-crc.org/ont/SOMA.owl#Canister. To retract
a triple fact from the knowledge base, the more fundamental query kb_unproject(triple_fact) is
used where triple_fact is a triple.

3.2.3 Percept Grounding into Ontology (WP5)

In order to reason and understand what is going on as the robot performs, it is a crucial step to link
the ongoing activities to the ontology. This mainly consists in attributing meaning to robot motions,
scene objects, events, etc. by grounding them into specific concepts. Since these percepts are handled
by different modules in TraceBot (e.g., perception executive, planning executive, action executive),
they come with their own conceptual classifications of these percepts. The arising problem is how to
uniformize these classifications in the TraceBot ontology. For instance, when the robot comes into a
safe pose after completing a task or before starting a task, the planning executive called it move_home
(local class), it is referred in the ontology to as http://www.ease-
crc.org/ont/SOMA. owl#ParkingArms (ontological class).

m Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

:~$ rostopic pub /tracebot knowrob

frame id: '
goal id:

name: 'Canister’
exact: true"
FﬁbllShlng and latching message. Press ctrl-C to terminate

:~$% rostopic pub /tracebot know

stamp:

secs: 0
nsecs: 0O
frame id: '’

goal id:
stamp:

classname: 'Canister’
exact: false"
ﬁubllshing and latching message. Press ctrl-C to terminate

Figure 3: (a) the query and result for exact ontological classes, (b) the query and result for
ontological classes from lexical field i.e., concepts that are closely related to the concept of
canister.

Get_Class_Id(local_concept_key, exact). This interface takes as parameters the local class
local_concept_key of a percept and returns the corresponding ontological classes. When the second
boolean parameter exact is set to false, the interface returns all the ontological classes from the lexical
field of the local class. The point here is that one might not be sure about whether the local class is
correct. Figure 3 illustrates the demonstration of this interface.

3.2.4 Handling articulated and compound objects (WP5)

In TraceBot, objects are generalized to articulated and compound objects in the sense that one should
inherently reason about them with respect to their parts. And one fundamental step towards
reasoning about the states of compound objects is to be able to instantiate them properly.

m Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

:~$ rostopic echo /tracebot_knowrob cindividual/result

:~$ rostopic pub /tracebot_knowrob_cindividual/goal tracebot msgs/KBNewComplexIndividualActionGoal "header:

®

me : 2/2/TraceBot#Needle'"
publishing and

:/ /v . semanticweb.org/smile/ontologi

object_id:
parent_id: "

object_id: "
parent_id: "

:-$ rostopic pub /tracebot_knowrob_query_knowledge/goal tracebot msgs/KBQueryKnowledgeActionGoal “header

®

q "kb_call(triple(/1 icweb.org/smile/ontologies/2022/2/TraceBot#Needle VSKINCHX\",\"http://www.semanticweb.org/smile/ontologies/ raceBot#has_part\",Part)).'"
publishing and latching m - 1-C to terminate

:~$ rostopic echo /tracebot knowrob query knowledge/result

secs: 1699530261
nsecs: 320527076
frame id: '

secs: 1699530261
nsecs: 312728166
id: "/tracebot_knowrob node-7-1699530261.312728166"
status: 3

results:
- '{''Part'': ''http://www.Semanticweb.org/smile/ontologies/2022/2/TraceBot#Needle VSKINCHX@NeedleCap''}"'
- '{"'Part'': ''http://www.semanticweb.org/smile/ontologies/2022/2/TraceBot#Needle VSKINCHX@NeedleDistalEnd''}"'
- '{''Part'': ''http://www.semanticweb.org/smile/ontologies/2022/2/TraceBot#Needle VSKINCHX@NeedleHandle''}"'

Figure 4: (a) the query and result for instantiating a needle, (b) the query and result for checking
the aggregation of part instances to parent instance.

For instance, when a needle is instantiated, all the needle parts (distal end, handle, cap, etc) are
instantiated along with it and the instances are connected with each other. Later on, the cap will
become an integral object if it is to be removed and laid on the table.

And given the position of the cap instance and that of other parts such as the distal end, then one
would be able to infer that the cap has been removed. This is also essential for tracking parts of an
object to be later on able to reassemble it, e.g., closing the bottle after opening it.

New_Complex_Individual(class_id). This interface generalizes the instantiation of objects by
viewing them as compound and then generating a tree of instance where child instances are defined
as parts of the parent node. It only takes as argument the ontological id of the object to be instantiated
such as http://www.semanticweb.org/smile/ontologies/2022/3/TraceBot#Needle. This
interface is demonstrated by Figure 4.

3.2.5 Retrieval of common poses for grasp and motion planning (WP5)

m Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

http://www.semanticweb.org/smile/ontologies/2022/3/TraceBot#Nee

D5.3 Software models (final)

Though the natural world is dynamic, in the sense that the state of entities changes over time, it
maintains however a considerable stable structure whose knowledge is commonly referred to as
commonsense. This considerably reduces the entropy of the natural data the robot has to process in
order to successfully interact with the world. Some of these stable structures are the common poses
of entities (e.g., the typical standing pose of a long-tail glass) after an action is performed and the
common poses of the grippers when grasping an object for a particular action execution (e.g., grasping
a standing bottle of milk to pour some milk into the mug). Get_Common_Pose(object_id,
pose_type): This interface returns the common pose of an object after an action, or the grasp poses
of the gripper for a given object and a given envision action as shown by Figure 5.

$ rostopic pub /tracebot knowrob_common pose/goal tracebot msgs/KBCommonPoseActionGoal "header:

class_name: 'Canister'

pose_type: 'Grasp'"
publishing and latching message. Press ctrl-C to terminate
-

$ rostopic echo /tracebot knowrob common pose/result
header:
seq: 1
stamp:
secs: 1700055463
nsecs: 327181100
frame id: "'
status:
goal id:
stamp:
secs: 1700055462
nsecs: 863137960
id: "/tracebot knowrob node-1-1700055462.863137960"
status: 3
text: '
result:
pose:
position:
Xz 9.1
y: 0.12
z: -0.33
orientation:
x: 0.02
y: 0.14
z: 0.87
w: -0.15
offset:
x: 0.14
y: 0.36
z: 0.78
grasp type:
grasp type id: 2
custom grasp: []

Figure 5: (a) The query about relative grasp poses for canister, (b) answer about relative grasp
pose for the canister.

3.2.6 Retrieval of common object properties (WP5)

Inspecting the general or specific attribute of a concept is key to handle entities that are classified by
that concept. For instance, knowing that canisters are transparent would cause the perception
executive to choose a dedicated algorithm for its detection.

Get_Properties(object_id, property_id, quantifier). This interface returns the value of a
given attribute of an entity that is classified by a given concept, for instance the diameter of a specific
bottle, the color, the object parts. Figure 6 demonstrates the interface.

m Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

$ rostopic pub /tracebot knowreb data property/goal tracebot m: BDataPropertyActionGoal "header:

ticweb.org le/ontologies/ 20!
nticweb.org/smile/ontologies/20.

ss ctrl-C to terminate

$ rostopic echo howrob_data property/result
header:
seq: 6
stamp:
secs: 1700060374
nsecs: 508157014
frame_id:
status:
goal id:
stamp:
secs: 1700060374
nsecs: 441551685
id: "/tracebot knowrob node-8-1700060374.441551685"
status: 3
text:
result:
values:
- http://www.semanticweb.org/smile/ontologies/2022/2/TraceBot#CanisterAirVent
- http://www.semanticweb.org/smile/ontologies/2022/2/TraceBot#CanisterQutletPort
- http://www.semanticweb.org/smile/ontologies/2022/2/TraceBot#Pose

$ rostopic pub /tracebot knowrob data property/goal tracebot msgs/KBDataPropertyActionGoal "header:

sec
frame_id: **

emanticweb.org/smile/ontologies ceBot#Canist
ti org/smile/ontolog 22 TraceBot#has

latching message. Press ctrl-C to terminate

wrob data property/result

secs: 1700060015
nsecs: 114850759
frame id: '
status:
goal id:
stamp:
secs: 1700060015
nsecs: 9099483
id: "/tracebot_knowrob node-5-1700060015.9099483"
status: 3
text: '’
result:
values:
- Transparent

Figure 6: (a) The query and answer about canister’s parts, (b) query and answer about canister’s
color.

3.2.7 Recording of Neem Narratives and Experiences (WP5)

As the robot performs sterility testing tasks, it memorizes what it is doing in terms of narratives i.e.,
what (tasks?), when (execution time?), who (actuators? sensors? objects? roles?) and in terms of
experiences i.e., sensor data (sensations? feelings?). Such memory is known as NEEM for Narrative-
Enabled Episodic Memory and is grounded into the ontology to enable understanding. These NEEMs

m Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

constitute the informational foundations of subsequent generated audit trails of the robot activity, but
also rich, not to say universal, training datasets for multi-purpose robot learning. The concept of
NEEM is illustrated by Figure 7. In order to record the NEEM, the interface below makes use of the
above primitive interfaces as follows.

NEEM Narrative
P
- Contains high-level decisions,
sensory interpretations and task
context of an episode
Ca:ilstter] [I;'-:;:] - Symbolic representation of
goals, plans, actions, objects
Locate
- Uses concepts connected inan
Canister
[Grab Tube] - Refers to NEEM experiences
Insert for detailed, grounded reasoning
_ Canister » /
ontology 'EM Experience g‘\'/’y .
" R . ye

Attribute or Object
Container
contains max 1 ChemicalSolution
has_color value "Transparent”
has_material value "Glass"
has_mesh max 1 xsd:string
has_object_pose exactly 1 ObjectPose
has_part exactly 1 CanisterAirVent
has_part exactly 1 CanisterOutletPort
has_part exactly 1 ObjectPose
has_shape value "Cylindrical"
aspable value trye

=
o |
Object Poses, ‘&‘ - a%t “é"
masses, ... - .

\ V. 4

Robot poses,
forces, ...

Figure 7: (bottom-right) The sensor data as robot experience, (top-right) the robot activity
narrative and (bottom-left) the grounding of the symbols from activity narratives into ontology.

Begin_Episode(root_task_id, env_model, agent_model). An episode for a given task is a
complete execution of that task, which might be composed of subtasks. The recording of an episode is
the smallest unit of NEEMs and starts with a call to this interface, taking as parameter the type of
action being performed, the environment model (i.e., where the action takes place such as lab or
kitchen which is described in the ontology) and the model of agent or robot performing (also described
in the ontology). This interface returns the id of the instance of the created root action.

Set_Episode_Title(episode_id, title). This interface sets the title of a given episode. This is
an important annotation of the episode for retrieving, presenting the corresponding NEEM but also
to learn from it.

End_Episode(neem_path). This function terminates the recording of a NEEM by storing it into a
specific location of the disk specified by neem_path. This will contain NEEM narrative as triples
(object, predicate, object).

Begin_Event(action_id). In TraceBot-SOMA ontology, actions are regarded as a subclass of
events which themeselves describes any phenomenon that characterizes a state change. When an
action is about to be executed, this interface instantiates it and allocates a begin execution time to it.
Beyond the beginning execution time, this interface can also trigger events that cause the execution

Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

of critical actions such as the verification of the action feasibility and the storage of the verification
results.

End_Event(action_instance_id). Once the action has been executed, this function registers the
termination in the NEEM by indicating the end execution time. Beyond the end execution time, this
interface can also trigger events that cause the execution of critical actions such as the verification of
the executed action and the storage of the verification results.

Set_SubEvent(sub_action, parent_action). Given that some actions might include other
actions, this interface asserts a given sub-action as a phase of a given parent action. This is essential
to generate the action tree of the robot activity which represents the skeleton of the activity narrative.

Set_Participant_with_Role(entity_id, role_id, action_id). As already mentioned above,
a narrative is also about the participants and the roles they play in the story. For instance, the canister
can play the role of stimulus in the action perceiving but the role patient in the action grasping or
inserting. This interface asserts a given entity as participant in a given action with a given role.

Set_Event_Status(action_id, status).Once an action has been verified either for feasibility or
success, the decision of verification (e.g., succeeded), noted here as status, is also asserted.

Set_Event_Confidence(action_id, status). Beside the status of the action verification, there is
also the confidence of the result which somehow describes the probability that the decision is correct.
This characterizes the multiple sources of uncertainty during reasoning.

Set_Comment(entity_id, comment). This interface allows generic annotations of symbols from the
NEEM narrative. As the Set_Episode_Title seen earlier, the goal is manifold, but mostly either for
learning or understanding purposes.

Begin_Episode_Experience(episode_id). What has been recorded so far is just symbolic and
therefore part of the NEEM narrative. Along with the recording of narratives, the beginning of an
episode also triggers the recording of the robot experiences through this interface. Given the episode
id, the interface knows which environments, agents and objects are involved and will automatically
fetch the sources of sensor data from the ontology, listen to them and store them within the knowledge
base while keeping track of their chronological order. In the ROS ecosystem, these sources of sensor
data are referred to as topics and can be listened to and recorded within the so-called bag files.

Belief Perceived At(object_id, pose). Besides sensor data that are part of the NEEM
experiences, there are also object poses. When an object is perceived for the first time a stream is
created to advertise its pose at regular intervals of time. This creates a trajectory of the object pose
over the course of the task execution. The same pose is published to the stream if no change occurs.
And when a change occurs, this is notified by this interface and the new pose of the object is advertised
in the stream. In the ROS ecosystem, these pose streams are called TF (TransForm) topics.

Stop_Episode_Experience(episode_id). When the episode ends, the recording of the experiences
is also terminated and stored knowledge is exported from the knowledge base into the location
specified by neem path for portability and exploitability.

Figure 8 illustrates the recording of the NEEM for an episode of the generic fitting an object into
another one called FitInsertableIntoInsertee.

m Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

MRFGBCPI

y
npatterns.org/ont/d

3-06-30 00:19:53.59827
#Executionstate Succeed

Figure 8: (a) The action tree of the NEEM narrative of an episode of FitInsertableIntoInsertee
action, (b) the assertions of symbolic knowledge in the NEEM narrative, (c) the extraction of
experience sources from the ontology, the listening of these streams

3.2.8 Automated Planning and Execution of Verification Tasks (WP4)

We iterated many times that the ultimate goal of verification in the TraceBot project, may it be visual-
based, tactile-based, DT-based, acoustic-based, odometry-based, symbolic-knowledge-based etc.,
could be reduced to the verification of action feasibility and success. And we termed such ultimate
verification as functional verification, which makes use of the recorded NEEMs grounded into the
ontology and enriched by the results from primitive verification modalities (e.g., visual-based, DT-
based) to ultimately decide the feasibility and success of actions with respect to the formulated action
pre-conditions and post-conditions. However, there are three core challenges:
(Challenge 1) As an action becomes more and more complex in structure and length, it becomes
difficult to formulate its pre-conditions and post-conditions comprehensively.
(Challenge 2) Secondly, as the action complexity grows up, it becomes difficult to figure out how to
make use of the dynamic content of NEEMs (e.g., tactile sensor available in this episode and not in
the other one) to check against the pre- and post-conditions of such actions. Notice that a brute force,
i.e., an attempt to store everything in the NEEM is not realistic and only makes the robot control
program very rigid as not all knowledge modalities are usually available and the set of knowledge they
can provide is practically unbounded. (Challenge 3) Finally, notice also that though two action
instances of the same type (e.g., Grasping) do very likely have the same pre- and post-conditions, the
actual procedures to attest that those conditions are met might significantly differ (e.g., checking
paper in robot gripper vs checking bottle in robot gripper). In order to address these three challenges,
we propose a highly scalable (w.r.t. process structure, length and diversity of knowledge modalities)
framework for automated planning and execution of verification tasks whose architecture is depicted
on Figure 9.

m Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

Query: Is_Successful (fitting_FGHTYZSR)

Verification Executive
child n:

|
Ay e A
L

action tree

Ontology
Interface

{ verifiers
—
verifier n: &
Status: succeeded €Xecutes
Confidence:0.9 verifier tree
P vermertree

Verifier_Locate_R5D
generic info

partuclpanls

- GetSensor(msg_type, action_id, nbs)
- GetActor(action_id)

- Inspect(object_id)
GetExecTime(action_id) &
- GetSubAction(action_id) i

-
NEEMs

contextqal info)

-

grounding

Ontology of Action Verification

J

Neem Interface

Figure 9: Automated planning and execution of action verification tasks.

In the ontology, primitive actions are defined in terms of their participants which themselves are
defined in terms of roles they play in the action. Notice that roles are more stable in terms of action
participants than direct object names. In the former case, one can specify the participants of an action

ahead.
Action k Action n
Recognizing: 1Tran5p°ftlng :
roles:
roles: S T
- Sensor - Patient
- Stimulus - Source
verification: — Destination
KB-Based: | .[verification:
S e KB-Based: (.
DE-Paged: 133 . DT-Based: (.-
TaCtlle-Based V.2V Tactile-Based: /. 0
Odometry-Based: 0.0 Odometry-Based: (.
Visual-Based: .40 Acoustic-Based: (.0
Visual-Based: (.10

Figure 10 Revising the specification of actions in the ontology for flexible and automated

- Horizon 2020

action verification

18

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

Moreover, the distribution of capabilities over knowledge modalities to enable the verification of the
underlying action is provided based on commonsense (e.g., tactile sensors are more likely to detect a
slippage than visual sensors). Whereas the specification of actions’ participants allows the fine-
grained specification of verification algorithms as we will see, the distribution of verification
capabilities over knowledge modalities informs about how to combine concurrent verification
algorithms and consolidate their outputs. To ease the specification of primitive actions in terms of
participants and distribution of verification capabilites, yaml configuration files are provided such as
illustrated by Figure 10. This being done, the framework assumes a bag of verification experts called
verifiers where each verifier is competent at verifying a specific action for a given set of objects playing
some given roles under a set of well-specified knowledge modalities. This restriction of the verifier
w.r.t. actions, actions’ participants and necessary knowledge modalities is termed as the verifier’s
domain. Also important is the detailed specification of knowledge modalities in terms of nature (e.g.,
symbolic/subsymbolic), type (e.g., visual, acoustic, knowledge base), source (e.g., head camera) and
the knowledge stream (e.g., ontology or sensor channels). For the specification of verifiers and
modalities, templates of yaml configuration files are also proposed as interface with the ontology as
shown by Figure 11 and Figure 12.

Verifier k Verifier n

it
§ th verif 12 LOs tion varifi
verifier: name: FRBJrabFeasibilityCheck

nama: TransparentObjestRecognitionchesk x::"ff:f‘:‘_1_’ the sucesss a grasp acticn
q i - ~ e rhe = - + Tl 1 i - g - f
d.es:r:.;:-rtlon_ Cherk the success of a recognition action ina:
mode: Success - @rasping:
domains: objects:
- Recognizing: - Buppert: [
shj=cts: = Container: []
= Suppert: [] FORSEER Ll —
. ® sot . Le fthrmBUR sri
= Containex: (] ot . RAGNTArmAURLO . Grippe
- hstox: [] - Bensor:
- Sensor: = Patient:
- FobotE@Tracebot .Head.Camera@D435 - Canister
- Patient: = Destination: []
canister _ Source: [
Ri tled - Teal: []
B1 . = Acoormodation: []
RinseB ek modalities: [KE-Based, Visual-Based, Odemedry-Based]
= Destination: [] - Plekinglp:
- Source: [] abYacta:
- Teel: [] : M"“":_ Le ftarmiURL0. Gri Brobot
- Recommodation: |1 Le ftarmBURL0. GripperiRobotig

¢t .RightArm@URI0 . CripperlRabotiqg

modalities: [Visuzl-Based, DT-Basesd)

modalities: [KB-Based, Visuwal-Baszed, Odomedry-Based]

oue uk oW Wk

Figure 11 Specification of action verifiers. On the left is a uni-domain verifier and on the right
is a multi-domain verifier.

Finally, the implementation of each verifier is provided beside its specification (i.e., input, output).
Notice that the pre- and post-conditions of an action are then moved to the implementation of the
specific verifier (See green verifier signature from Figure 11’s bottom). Such a description constitutes
an ontology of action verification tasks. Given a recorded NEEM of a task’s episode, the robot control
program is given two interfaces namely Is_Successful(action_id) and
Is_Feasible(action_id) to flexibly (e.g., at any time of the program execution) and respectively

Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

check whether a given action is successful or feasible. To compute these two predicates, the
verification executive first infers the action tree of the given action as well as the participants of each
primitive sub-action and the knowledge modalities under which it took place (i.e. action structure),
which somehow delineates the domains of potential verifiers. In order to retrieve this information
about an executed action from the NEEM, the NEEM interface described above is used after being
augmented with a few more specific interfaces that we describe below.

Modality k Modality n
Nisual-Based: " mrell sl FEE et e DT-Bafed: # Digital-Twin-based verification
topics: topics:
- source: Robot@Tracebot.Head.Camera@D435 - ::25:?: Robot@Tracebot . Head.CameralD435
value: i

color_info: /unreal vision/color info
color_image: /unreal vision/image color
depth_info: /unreal vision/depth info
depth_image: /unreal vision/image depth
mask_image: /unreal vision/image object
mask_info: /unreal vision/object color map

source: Unreal Environment

wvalue:
time_frame: /unreal/tf

source: Unreal Robot@Tracebot

value:
joint_state: /unreal/joint states

coleor_info: /camera/camera/color/camera_info
color_image: /camera/color/image raw

depth _info: /camera/depth/camera info

depth image: /camera/camera/depth/image rect raw
imu: /camera/imu

Modality k .
Modality t
KB-Based: # knowledge-based verification
topics: Tactile-Based:
- source: Environment topics:

- source: Robot@Tracebot.LeftArm@UR10.Gripper@CEA
value:
thumb_finger: /1h/sr tactile/touch/th
first finger: /lh/sr:tactile/touch/ff

value:
time_frame: /tf
ontologies:
- package: tracebot—-knowrob

pathname: ontology/SOMA-TraceBot.owl middle finger: /lh/sr_tactile/touch/mf
- package: tracebot-knowrob ring_finger: /lh/sr tactile/touch/rf
pathname: ontology/TraceBotOntology.owl little finger: /lh/sr tactile/touch/1f

Figure 12 Specification of some knowledge modalities. For each modality, the knowledge
might be flowing through topics or stored in a knowledge base such as ontologies. And for
each modality, there might be multiple sources of information (e.g., three cameras in

Given these verifiers’ domain constraints, the verification executive searches for each primitive sub-
actions one or if possible, a group of satisfiable verifiers to build a verifier tree isomorphic to the target
action’s action tree. To access the list of verifiers registered into the ontology as well as their
properties, the generic ontology interfaces described earlier are used. Once the verifier tree has been
built, the implementation i.e. program for each verifier node is loaded and executed using the NEEM
interface for accessing contextual information (e.g., object’s pose). At the end, the tree of individual
results is processed as if the tree was a complex boolean operator for the decision output (e.g., action
successful if all sub-actions were successful, false if at least one action failed and undecided
otherwise), and as a joint probability tree for the confidence output (e.g., the confidence of an action
in the tree is the product of the confidence of all the direct child actions. If multiple modalities
contributed to the verification of an action, then the ultimate confidence for the verification of that
action is the weighted average of the verifiers’ individual confidence where the weights are their prior
capabilities to verify the given action. Since some modalities could not contribute, the weights of the
contributing modalities are renormalized (i.e., sum up to one) before application. However, if a single
verifier makes use of multiple modalities, then the previous rule is applied while keeping verifier’s
individual confidence identical for each of these modalities. Given that multiple verifiers can

Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

participate in the verification of a single action, it is possible to obtain contradictory results. To
address this issue, we first highlight the following remark. That is, if a verifier a True with a confidence
of C, this means that it returns False with a confidence of 1-C and vice-versa. This being said, given
the different individual results from different verifiers for a single action, the confidence of probability
of the overall verification decision being True is computed as well as for it be False. Then, the decision
with the highest confidence is selected (i.e., argmax). If both decisions (i.e., True and False) come with
the same confidence, then the final decision is returned as Undecided. This consolidation of individual
verification results is illustrated by Figure 13.

False Undecided True

PT(R=True) <PT(R=False) PT(R=True)=PT(R=False) PT(R=True)>PT(R=False)

PT(R=V)=)» Pl (R=V) x C]

Figure 13 Consolidating the verification results from individual verifiers for a given action or
task T. PTis the probability of having a decision for a given task T, P7; is the probability of having
a decision when using the knowledge modality 7 and C7; is the capability of knowledge modality
i to inform the verification of the action T.

Finally, the explanation of an action verification decision if the action is not atomic is the fact that all
the sub actions were successful if the said action is successful, at least one of the sub actions failed if
the said action failed and at least one of the sub actions was undecided if the action was undecided.
For the atomic actions, the explanation is returned by the verifier as an output. In this case, the
explanation derives directly from the verifier’s intention and control flow, exactly as a compiler will
generate error messages to explain while a program compilation failed. And if multiple verifiers are
working in the verification, then the explanation is generated by concatenating the explanations from
individual verifiers while using contrastive connectors for opposite decisions (e.g., but, however,
although, ..) and supportive connectors for similar decisions (e.g., moreover, furthermore,
additionally, ...). To conclude this section, let us describe succinctly the interfaces needed for this
automated planning and execution of action verification tasks. Apart from the Is_Successful
(action_id) and Is_Feasible(action_id) interfaces, as well as the templates of yaml
configuration files interfaces, most of them are just getter counterparts to the setter interfaces
discussed in the previous section.

Is_Successful(action_id). This interface verifies whether a given action was successful and
returns a boolean decision, a confidence score and a verbal explanation of the decision.
Is_Feasible(action_id). This interface verifies whether a given action is feasible and returns a
boolean decision, a confidence score and a verbal explanation of the decision.

Get_Participant(action_id). This interface returns the participants in terms of entities and roles
of a given action.

m Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

Get_Action_Execution_Time(action_id). This interface returns the execution timeslot of a given
action.

Get_Action_Tree(action_id). This interface returns the action tree of a given action.

Inspect(entity_id). This interface returns the properties of a given entity from the NEEM (e.g.,
pose of an object, its color, ...).

Get_Experience(action_id, msg_type, nb_msgs). Finally, this interface retrieves from the
NEEM experience a given number of experience samples of a certain given type after an action took
place (e.g., one color image after the robot performed the insertion action). This is also crucial for the
so-called non-verbal explanation of verification outputs in the audit trail.

3.2.9 Audit Trail Generation (WP5)

Generate_Audit_Trail(audit_trail path). As you can notice, NEEMs contain so much
information that it will not be trivial for a human investigator to get at first glance an idea of what
happened during the robot performance. The idea of the audit trail is to summarize in a human-
understandable manner what the robot has done, when, who participated, how it went and why it
went so. This interface generates the audit trail from a given NEEM and saves it as a pdf document to
a specific given location. An overview of the audit trail’s structure and content is illustrated by Figure
14. Note that the action hierarchy is encoded by each action’s index but as well as the color of the
corresponding row’s background color.

|RACEBOT
RAC E B uT End-User Auto-Generated Audit Trail
Episode : Insenting Canister Into Draintray
Duration 1 24.10.2023, 18:54:33 - 24.10.2023, 18:54 54
End-User Auto-Generated Audit Trail S E N i
Episode : Inserting Canister Into Draintray
Duration 1 24.10.2023, 18:54:33 - 24.10.2023, 18:54:54
Status : Failed / --[Successful]- / Interrupted / Pending

Confidence : 92.38%

Figure 14 Audit trail of a fitting insertable (canister) into insertee (drain tray) action.

2

- Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

3.3 Simulation-enabled reasoning

The fundamental definitions and software modules of deliverable 5.2 are still valid. The developments
during the last reporting period were focusing on the improvement of the simulation environment
and the extension the software modalities to tackle the integration of these components with the real
world system. We have to ensure that the used meshes resemble the real world objects, so that visual
comparison between the real and simulated world can be used. The changes that were made include,
among others, the different tables used by the different partners, as well as the pump as shown in
Figure 15 and Figure 16.

Figure 15 The digital twin of the current revision of the TraceBot demonstrator constructed by
Tecnalia (left) and Astech (right) in our simulation component.

23

- Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

Figure 16 The digital twin of the old pump (left) and current pump (right) in our simulation
component.

For the needle insertion use-case we finished the constraint-based object interaction. Figure 17 shows
a schema for how this interaction works. They act independently, as long as needle and bottle are
separate. As soon as the needle starts to overlap with the bottle, the linear constraint is activated, and
the needle can only move linearly into or out of the bottle. If the needle is pulled out and the overlap
stops, both objects will be independent again and the constraint is deactivated. If the needle is pushed
further into the bottle, the fixed constraint is activated. Now, the needle cannot be moved. Only if the
applied force exceeds a specified limit will the fixed constraint be deactivated. This functionality is a
property of the needle only. This means it is possible to insert the needle into other objects, as long as
they allow the needle to overlap with said object.

24

- Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

start overlap start overlap - B
(@ (@ M)
Il o e | 3 e ||l e

stop overlap force > x

L _

| Linear Constraint

Fixed Constraint
Activated Constraint

Figure 17 Schema of constraint-based object interaction. The Semantic Digital Twin supports
different constraint types to model the attachment and interaction possibilities of objects
during manipulation actions.

Figure 18 The digital twin of the current revision of the needle with support and needle cap in
our simulation component.

In addition to the constraint-based object interaction, we needed to add the support of spawning
compound objects. As shown in Figure 18, the needle is supported by a holder and is covered by a
needle cap. To assert these objects into the semDT, the pose of those three objects must be known.
Instead of trying to perceive their pose, and risking to introduce perception errors, we are using our
knowledge of the relative poses to spawn them together, thus only needing the pose of one of the

25

- Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

objects. The different objects are connected through the constraint-based physics. Another important
development was ensuring that the IDs used in the different components of the semDT and the rest
of the system are consistent across representations.

3.4 Physical Reasoning based Embodied Probabilistic Simulations

We perform physical reasoning to safely handle the increasing uncertainty about the state of scene
entities in realistic and mission-critical interactions, enabling therefore scene understanding. This
physical reasoning is concretely realized through cognitive emulation where mental probabilistic
embodied simulations are essential. We designed and published a framework coined as NaivPhys4RP
(Naive Physics for Robot Perception) [3] (Humanoids 2022) to realize such physical reasoning. The
architecture of NaivPhys4RP is presented by Figure 19. As applications of NaivPhys4RP to TraceBot
are the points below:

Context as Online Narrative

e I N

Informal Narrative:

ACDL (Abstract Context Description Language)

(l"he robot performs a sterility test of

a medical product. The robot holds a
canister. The robot is placing the

transparent canister on the table.
Al

A 4

Formal Narrative:
Socio-Physical Scene Graph

7
‘.-
e

Context
Understanding

- -~k

2y,

"é’i,,e l

7~ " Motor Signals

Would the
canister stay
stable after

releasing

4 \
| N:,‘
__/

-

World Ontology
(Tasks , Objects, Agents, State,

Mental Behavioural Schemata)

How to release
it so that it
stays stable?

_ Sensor Signals

External World

Robot Mind

Figure 19 Sensors are severely limited in space, time and information quantity. Uncertainty
about state of scene entities is increasing with interactions among these entities. This results in
a lack of anticipation, poor learning from and therefore poor explanation of sensor data in
complex worlds. Like humans, NaivPhys4RP (Naive Physics for Robot Perception) leverages
commonsense to emulate how the world evolves in order to understand the world state under
severe uncertainty. In this second iteration of NaivPhys4RP, after providing a complete first
implementation of NaivPhys4RP, we demonstrate a learningless and safe recognition and 6D-
pose estimation of objects from poor sensor data.

Reliable Simulation. It has been argued on how well emulation of robot actions as well as object
interactions through physico-realistic simulation can significantly enhance reasoning in complex
worlds such as in TraceBot. However, simulation is only reliable if it makes use of the correct physical
parameters of the world such as surface friction, object masses, liquid density, which are most of the

Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

time unknown and whose determination constitutes a more complex perception problem since there
are no sensors that provide significant information for a straightforward computation of these
physical quantities. This leads us then to a chicken-egg dilemma. NaivPhys4RP regards this issue as
a perception problem and filters these physical quantities by not just realizing one simulation but
rather a many parameterized simulations called simulation particles and promoting simulation
particles that produce effects closer to actual real effects. The physical parameters of such simulation
particles are considered as the ones of the real world.

Safe and Learningless Recognition and Pose Estimation of (Transparent) Objects.
Though emulating the interactions of objects in the world through physico-realistic simulation
enables the correction of objects’ poses or the detection of wrong object classification, still it requires
the classical perception to produce the first results and the overall system remains then bounded by
the capability of the classification system, which itself suffers from high uncertainty from very lacking
sensor data (poor learning due to high entropy training data). NaivPhys4RP addresses this issue by
overcoming sensor data while generating and executing multiple emulations of very likely socio-
physical (objects+interactions) scenes in simulation. This generation of world is transparent and
causal and relies on capturing commonsense information that drives the organization of daily scenes
such as intentions, preferences, object and event ontologies, and teleology (e.g., if the robot is serving
milk, then there should probably be a coffee, a spoon and a milk bottle in the scene). Then, the most
representative simulation particles are filtered over time as explained in the first point. We showed in
a recently submitted paper [2] (ICRA 2024) how NaivPhys4RP can be used to safely recognize
transparent objects and estimate their 6D-poses without data- and resource-intensive learning.

Fine-grained and Prospective Verification. Finally, we intensively discussed the crucial role of
pre-conditions and post-conditions of actions in verifying those actions. However, these conditions
have only so far been described symbolically, which remains coarse and not fine-grained enough to
inform us about the actual physical effects if we were to perform those actions. For instance, a grasp
action’s pre-condition will require the gripper to be free and the canister object to be located, but it
does not tell whether the object is reachable or which force range should the gripper apply on the
canister for a stable grasp. On the other hand, symbolic descriptions of post-conditions will state that
the canister should be in the robot gripper, but the canister can be effectively in the robot gripper but
broken. Or, to refer to the previous example for serving milk, the milk bottle might be misplaced on
the table causing the milk to spill while placing. NaivPhys4RP does not only engage in providing such
fine-grained pre- and post-conditions but also allows the robot to envisioned in advance the
consequences of a given set of conditions and only engages with those that produce satisfiable results:
this is regarded as prospective verification (i.e., verifying in advance).

Note that in order to compute all these three problems, NaivPhys4RP fundamentally frames the world
state as SPOHMP (Situated Partially-Observable Hidden Markov Process) that evolves within a given
context and through the physics that scene entities undergo. Then, it formulates these scene
understanding tasks as bayesian/markovian inference tasks that are solved through a commonsense-
enabled particle filter, where particles are instances of a simulation. We proposed in this second
iteration [2] (ICRA 2024), beyond text-based interfaces (c++/python function, config yaml files), a
graphical user interface to interact with NaivPhys4RP, which is illustrated by Figure 20. In the final
iteration i.e., last year of the project, the text-based interface will be completely and properly wrapped
into KnowRob language specified in Deliverable 5.2.

Hyper—Parameterization: As shown by Figure 20, NaivPhys4RP’s GUI is organized in tabs where the
first tab enables the hyper-parameterization of the system. This first tab allows the users to enter

- Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

information about the target robot model and the streams to proprioceptive sensors (e.g., motion) of
the robot, characterizing the system variable U,. It also provides a way to enter information about the
exteroceptive sensor models as well as streams to those sensors, characterizing the variable Z;. Then,
a possibility to enter information about the world ontology K; as well as the language model for
describing the robot intentions or activity in terms of narrative N, is also provided. Finally, the GUI
also enables the input of information about the physical model of the world X, as well as the number
of parallel worlds to maintain to represent uncertainty as it is the case in the quantum world.

NaivPhys4RP - Naive Physics For Robot Perception _ a8 ®

Application

Emulator Configuration @ [~ [<] [} [<] [<] [~
Sensor configurations Motor configurations
Color Cam Info Topic: | [T NGy Color Cam Data Topic: | fkinect_head/rgb/image_color/con Robot Mokor Model: PR2 -

DepthCam InfoTopic: | /kinect_head/rgb/camera_info Depth Cam Data Topic: | /kinect_head/depth_registered/im Time Frame Topic: G

Color Cam Hints: compressed Depth Cam Hints: compressedDepth Joint State Topic: fioint_states

Source Frame: /head_mount_kinect_rgb_optical f = DestinationFrame: /map Select Joints/Frame:

a

Fl_caster_rotation_joint head_tilt_link

fl_caster_|_wheel_joint
Fi_caster_r_wheel_joint r_upper_arm_roll_link
Laripper_motor_accel¢
narrow_stereo_l_sterec

<

Image Height: 480 Image Width: 640

[<J<J<]

fr_caster_rotation_joint

L <H<N<]

fr_caster_| wheel_joint
Camera Model: Kinect -

Unregister

Unregister

Belief configurations Context configurations

Physical world Model: JupParasiM/Maps/Kitchen.umap world ontology: ivphys4rp/belief_stats | ivphysarp.owl

Number of Belief Particles: | 16 Language Model: ivphysrp/belief_stat ivphysarp.lm

N Context Narrative Topic: naivphysdrp/context_narrative
Unregister P /naivphysarp/ -

Register

Figure 20 Graphical User Interface to hyper-parameterization of NaivPhys4RP

P(C¢|N¢, K¢, Ci_1): Context_Understanding(N;, K;, C;_1). Once the system has been parameterized,
this interface, as shown in Figure 20 and Figure 21, takes as input the world ontology K.at a certain
time t, the robot intentions or activity description in terms of narrative N, (see the text field) and the
previous socio-physical graph of the scene C;_;to compute through commonsense-enabled sampling
the next most likely and statistically sufficient socio-physical graph of the scene C;. Figure 23 shows
how NaivPhys4RP can handle nonsense discource and Figure 21 and Figure 22 show how
NaivPhys4RP can generate a scene from a narrative of the robot activity or intention. Note that
NaivPhys4RP does not only sample as many graphs as worlds, but also provides the sampling
probability (low-probability graphs will die) and explanations of these generations (see points 1., 2.,
3., and 4., of Figure 21).

P(X;,U¢|C;): SocioPhysical _Scene_Imagination(C;). Once the graphs have been generated, the
corresponding scenes are straigthforwardly imagined from them in terms of object configurations and
interactions (e.g., robot holds the bottle), since the graphs are sufficiently detailed (note the statistical
sufficiency of these graphs mentioned earlier). This results in a portion of scene X;and robot action
Usas shown at the bottom of Figure 21 and Figure 22. Figure 22 particularly highlights the generation

m Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

of robot motions from the generated socio-physical graph of the scene.

D5.3 Software models (final)

imagination @ o

Context Editor - Abstract Context Description Language (ACOL)

B I U

0. Input Context Description as Informal Narrative

The robot test ge sample fluid. The sampl is right to the pump. The
rinse fluid is left to the pump. A canister Is in the drain tray. Another canister is in
front of the pump. The pump is on the sterility test table. The robot looks at the
table.

1. Syntactical Parsing of Context Description

context
statement

subject
determinant the
noun robot
verb

dverb tests
object
determinant an
adjectiv orange
noun sample fluid
delimiter

statement

subject
determinant the
noun sample fluid

verb
iverb
dverb is
preposition right to
object

determinant the
noun pump

delimiter

statement

subject
determinant the
noun rinse fluid

verb
iverb
dverb
preposition left to
object
o

NaivPhys4RP - Naive P

or Robot Perception

Ontology - Context formaliza

is_sight

Ben

-
is47 DrainTray
Canister_1
€]
saffbesotie
@ is/in
»
Orange:
.
SampleFilid
test

Imagination - Mind eye's view of context

is_part_of

s_front
4 D
h¥g
e Cdnister_2
Rump -
Bon 60 S
<
Table " -
ks RinseBote
look
isin
@ - @
need
Robot RinseFuid

2. Grounding of Narrative Symbols in the Ontology

canister —> http://ww g/f /2022/7/-

3. Inferring action's participant roles and multiplicities

4. Inferring potential role players In an action

naivphysdrp.owl#Canister looks at * looks at

drain tray —> http://www. o 12022/7/- 1->hittp://w i /- +1 Agent

naivphysérp.owl#DrainTray P = bl o
: i

is In—> http://www.semanticweb. [2022/1/- naivphysdrp.owliPhysicalObject 4

naivphysarp.owt#is_in “http://www.semanticweb.org/franklinfontologies/2022/7/-

pump —> hetp://ww a/ 2022/7)- bests naivphysdrp.oud#tMachine

naivphysdrp.owl#Pump I _ o +some PhysicalObject

isinfrontof —> mﬂ"‘#ﬂ semantioweb, gva‘!rinklm‘gmg logies/2022/7/ naivphysarp. MRS\.Jp_th

Figure 21 Relying on context-aware ontology to generate scenes in a transparent and causal
manner from vague context descriptions and to support generative scene understanding

scsicaton
Cotater Contguration @ Saller State Imaghation © it smentation @

Content Edir - Abatract o

015w semarticwets segfraskorsologes 283311
by owikTroge

B pe——
D owAPAOble

4tp e semorticned seqtrasinyoriologs 29211
i owlrttie

Sty semarticns Tk orEoloReI/ 0221
o owianiand

2115w semarticnet segtraskinyortologs 29221
P owiav

B eT————
[ty

e ——

T — |
b

s semarticue seg ikl oriologes 20231 L]
N iy

et semarticnets gt rakleyorsologes 13311
AT NN

10 semarticnets cegfrankleoriologes 622/
[iy

B ——
[y

125 fmwsemarticnst srqtrasinortologes 19T
oA iy

Imagination - Mind eye' view of content

Figure 22 Generation of robot behaviours in NaivPhys4RP

Horizon 2020

29

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

Context Editor - Abstract Context Description Language (ACDL) 10. lving ¢ i relationships among objects

B I U

|
|
il
Ml

*Machine cannot be contained or supported by Fridge
0. Input Context Description as Informal Narrative

Run Editable Thrid View Dynamic Auto-Correct
The robot prepares the breakfast. The spoonis in the red plastic bowl and the

machine looks at the bowl. The robot is in the fridge. Reset No Wrapping Character Wrapping) Word Wrapping Next Graph

Context Editor - Abstract Context Description Language (ACDL) 11. Resol\rlng dlrectlonal relatlonshlps among objects

B I U E=E=E ® Q
0. Input Context Description as Informal Narrative
* Bottle_0 is_left_4 Bottle_0
The robot picks the blue bottle. The milk is in the bottle and the bottle is left to the
milk.
* Robot_9 is_infront_20 CookTable_17
1. Syntactical Parsing of Context Description
context * CookTable_17 is_left_21 Robot_9

statement
subject
determinant the
noun robot

verb * Bottle is_left Bottle and vice versa: does not mpke sense!l!
dverb picks|

Figure 23 NaivPhys4RP handling nonsense discourse. (1) NaivPhys4RP claims that the robot
cannot be kept in the fridge. (2) NaivPhys4RP explains that if the milk is in the bottle and the
bottle is left to the milk, then that bottle is left to the container of the

P(X¢41|Us, X¢, Cryq): State_Anticipation(U;, X;, Cy1). Figure 24 illustrates how this NaivPhys4RP’s
interface continuously emulates the robot actions as well as object interactions to anticipate the most
likely state of the world. Very important here is the illustration of this multiple worlds maintained by
the system to represent the uncertainty the robot has of the world. This state anticipation results in a
next state X; 1.

P(Z;41|X¢41): Observation_Anticipation(X,). As also shown by Figure 24, by realistically rendering
these maintained physico-realistic scenes, this interface can anticipates the robot observation of the
world Z; (e.g., how would the table look like if the bottle was to fall?).

P(Xe41|Ue, X, Cri1, Ze 11): Observation_Explanation(Ug, X;, Cry1,Z¢+1). Once multiple worlds have
been generated and realized, this interface filters or preserves the most likely ones based on how closer
the effects resulted in are to the real ones. In order to compare these mental worlds with the real ones,
we do not proceed in a straightforward way (e.g., very ineffective), but rather rely on Gestalt
principles. Figure 25 illustrates how we recognize and estimate the pose of transparent objects.

P(Xe41, UelUei1, Copos Xe Xerta2s [Zee42,]): State_Explanation(Uyq, Cr.p 42, Xe Xe-t420 [Ze:t42,]). This is
basically the global problem of maintaining awareness of the state of the world over time given all
priors and evidences. We showed that it can be computed from the computation of the first five tasks.

P(X¢|Ko.t, No.t» Zo.t Up.t—1): State_Filtering(Ko.;, No.¢, Zo.t, Up.—1). Fundamentally, this interface is
concerned with what actions would cause a state (e.g., what grasp force range will cause stable grasp
of canister?, which range will damage it?). Likewise, we showed that it can be computed from the
computation of the first five tasks.

Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

P(K¢+1|Ke) Ny, Ze, Xy, U1, Cp): Learning (Kg, Ny, Zy, Xy, Up—q,C). This interface is responsible for
updating however carefully the abstract and stable structure of the world (i.e., ontology) K;.as the
robot gains more and more experience. Actually, this update is mostly performed manually by
observing the NEEMs and by providing templates of yaml configuration files to add knowledge into
the ontology (e.g., the robot’s preferences of locations of objects as it manipulates them). An
automation of this interface will be targeted in the next development cycles.

Figure 24 (1) Overview of the NaivPhys4RP’s interface responsible for anticipating the world
observation and state. Note multiple simulation particles to represent uncertainty about real
world state. (2) Illustration of belief state in the kitchen domain from a third person view in
single-display mode (bottom-left), multi-display mode (bottom-right), and from a first person
view in single-display mode (top-left) and multi-display mode (top-right). (3) Illustration of
the belief state in the medical laboratory domain.

- Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

realRGB BeliefMask /BeliefRGB

l Detects objects

BBoxes of real objects Vs
Ohloﬂprup::tln in l BBoxes of beliefob

Adjusts bboxes

Recognizes objects 1 based on belief

5

Figure 25 (1) Overview of NaivPhysqRP for observation explanation through comparison
between imagination and reality. (2) Illustration of comparison between imagination and reality
based on Gestalt principles for recognition and pose estimation of transparent objects.

3.5 Perception Executive

In this section of the deliverable we are presenting the changes in the perception executive. The
presented interface from our last deliverable 5.2 is not changed. However, we are extending the
definition of the underlying software model to provide a description on how the interface is mapped
to an actual execution of perception-related tasks like for example imagistic reasoning or object
detection.

One insight was that the perception tasks are changing over the course of the task execution but also
the underlying mechanisms to analyze the sensor data against the estimated rendered world state
requires different methods. The order in which they are executed needs to be adaptable and handle
potential dependencies. Furthermore, it was necessary to develop a capable model for perception task
execution that can adapt during runtime not only to the different tasks but also to different
parameterizations of a perception process. A solution for this problem that we have developed are so-
called Perception Pipeline Trees (PPTs). We introduced the concept in a publication [4] that is
currently under review for ICRA 2024.

32

- Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

Sensor Data Perception Pipeline Tree Analysis Engine

Collection Reader : Perception Result
Hypothesis

Interpretation &
Task Interface = = Reasoning

ocation Worksurface))

R Fbm @ Et)bwo
(location WorkSurface)) -

)]

<

‘.:Objxl Obj“z"t—"h “3
® «

GE Belief

Figure 26 Architecture of our task-adaptable perception executive system. Perception tasks will
be mapped into a task model called Perception Pipeline Tree, which is based on Behavior Trees.
Gained information is annotated to a common, typed data structure which is used to infer the
final result.

Consider the general architecture shown in Figure 26. When confronted with input sensor data and a
query for a perception task, our proposed system is reasoning about a suitable perception process for
the task at hand and adapts the perception process at runtime. One key component is an extension of
Behavior Trees, that have been used in game development for reactive character control. In our
framework, we extended Behavior Trees to PPTs which allow us to cover a wide variety of perception
tasks and imagistic reasoning mechanisms. We have chosen Behavior Trees as our task model since
they are a representation with concise semantics that allows to flexibly switch between tasks. BTs have
received a lot of attention in robotics in the last years due to their flexibility, simplicity, generality and
expressiveness with a small set of core elements. A key component inside of the architecture beside
the PPT is the so-called Common Analysis Structure (CAS). The CAS is a central storage place which
allows the different computer vision methods, that are used to analyze the images, to exchange their
data during runtime. This allows for example to first detect objects in the image with the computer
vision methods provided by TU Vienna and to afterwards apply to each detected object a color filter
to detect for example if a needle cap is currently attached to a detected needle. Alternatively, one could
also employ zero-shot vision models for a similar purpose.

A key aspect of the PPT representation is also the ability to have different perception processes that
can be combined in one representation. Take for example the perception process of detecting an object
and afterwards verifying if the object that has been detected looks similar to your rendered belief of
it. In the first step one would model a standard object detection pipeline which perceives the sensor
data, employs an object detection method and then asserts the detected object to the internal belief
state. In the second step the system needs to synchronize the belief state with the digital twin and then
perceive from the digital twin the rendered belief. Afterwards the rendered belief will be segmented
to detect all the objects and their positions in the image frame of the rendered belief. Since we
maintain a relation between each detected object in the real world and its rendered counterpart, we
can now compare both images depicting the objects against each other on the pixel level. For visual
comparison it is possible to use for example appearance-based features that can regress the object's
appearance into a latent space representation, or you can also employ semantic knowledge. In the
latter case, one could model a comparison method based on the expected properties of an object. For
example, you expect to have a blue cap on the needle during the beginning of the process and compare
the existence of this feature in both images.

In the following figures we will highlight two PPTs that are related to the imagistic reasoning tasks we
are conducting in TraceBot. When describing the elements in the PPT it is often useful to be familiar

Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

with the concept of Behavior Trees. We refer the reader to an excellent introduction in [1] to get an
overview of the Behavior Tree concept.

Main Pipeline
[CAS]

Task Scheduling

-

Main Annotators

l

Perceive Object Hypothesis Generation

=

Figure 27 Perception Pipeline Tree for object detection. The top of the tree contains utility nodes
for wvisualization and query analysis for the perception process instantiation and
parametrization.

In the first tree (see Figure 27) you can see how object detection is modelled when the system is
looking for objects initially. The top of the tree is common for the other perception processes as well
and is handling the visualization capabilities of the system that are used by the developer during the
creation of the model and the usage of the system for result analysis. The second main part is the
related to the input query, which contains the perception task stated by the high-level of the system.
The main perception process is then placed below the Task node. The object detection is a sequence
of perceiving the actual data and the application of the object detection model that is also doing 6D
pose estimation in the context of TraceBot. The result of this step is then asserted into the robots’
belief state about the objects in the world. After the sequence is successfully completed, the tree is
basically starting over and waiting for the next command. It also updates the visualization
component to show the generated results of the different employed computer vision methods.

In the second tree depicted in Figure 28, we extend the object detection process by a second pipeline
for imagistic reasoning. This new pipeline is first devoted to the update of our game engine-based
belief state and secondly the comparison of the detected object and their rendered virtual
counterparts. As you can see in Figure 28, it is possible to add another pipeline as a child of other

34

- Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

nodes in the perception pipeline tree. This allows semantically different subprocesses to be properly
isolated and also Annotators to be observation-specific and task-centric during their analysis2.

In the Main Annotators node, we have added the GE pipeline, where GE stands for Game Engine. In
contrast to the pipeline which is devoted to the detection of objects, we first have to conduct an
update step before the actual comparison can be done. In the beginning, the pipeline needs to
initiate the synchronization of the belief state and the virtual world in the game engine. This results
in either a) the addition of newly detected objects into the virtual world representation or b) in the
update of the detected objects and their poses in the virtual world. After the virtual world in the
game engine is set, we can finally perceive from it. Perceiving in this context is the retrieval of a
rendered image of our belief state that is set up in the game engine. After this rendered data has
been read in, we need to segment each of the objects shown in the rendered images to know exactly
which region of this image belongs to a certain object.

Root
Main Pipeline
[CAS]
Init Task Scheduling
A
Main Annotators
Perceive Object Hypothesis Generation

‘GEInit

Figure 28 An extended Perception Pipeline Tree which contains a second pipeline for imagistic
reasoning in the visual domain.

In the final step, we can now take the real world image on which the object detection has been done
and then the rendered image from the game engine showing the estimated belief of the world. Since
we have a location for both objects in image coordinates, we can now do a comparison on the pixel

2 The details of these differences are outlined in the Paper mentioned above. The key idea is: Observation-specificity allows a Pipeline in the

PPT to focus solely on the expected sensory inputs. For example, data from an RGB-only hand camera will be processed by its own Pipeline that
will only employ algorithms on RGB data. A pipeline is task-centric if it explicitly models the subprocesses of a perception task for a specific
semantic purpose.

35

- Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

level between both sub-images. This could, for example, be done with an apperance-based matching
method.

In PPTs, it is possible that nodes return a failure and therefore abort the execution of the rest of the
tree. If, for example, the object verification has detected a faulty object detection (e.g. wrong class), it
can now generate a signal and tell the caller that the object detection is likely to have failed and that a
re-perceive is necessary or abort the whole sterility testing process because manual intervention is
required. If the object detection and the visual object verification has been done successfully, the
system can now generate the result about the detected object and its relevant information for the
Process Master and then update the belief of the robot as necessary. After this step has been done, the
system is waiting for the next perception task to be sent by the Process Master.

m Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)

4 Deviations from the workplan

No major deviation has been detected, and the document has been delivered on time.

37

- Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)
5 Conclusion

This document represents a significant advancement in the TraceBot project, building upon the
foundational work outlined in our previous deliverable 5.2. We have successfully addressed more
complex use cases through key modifications and enhancements, particularly in the domains of
knowledge representation, reasoning, and simulation within the Semantic Digital Twin (semDT)
framework. Our focus on creating comprehensive interfaces for interaction among various
components, especially those under Work Package 5, has been beneficial in improving the system's
functionality and adaptability in our scenarios.

A notable development in this iteration is the introduction of audit trail interfaces as well as the
interfaces to the verification framework, whose outputs are essential in the audit trail. These interfaces
are crucial for ensuring transparency, traceability, and accountability in all operations within the
TraceBot ecosystem. Furthermore, our approach to handling compound objects—such as a needle
with a cap—demonstrates our system's enhanced capability to deal with complex, real world objects
that require delicate manipulation and interaction. This ability is essential for tasks like sterility
testing, where precise handling and tracking of objects are critical.

Our integration-driven approach has led to substantial improvements in the software models,
particularly in the simulation aspect, enabling the updating of the semDT in real-time, irrespective of
the robot platform used. These improvements are not just theoretical but have been validated through
practical application in the system integration phase. The enhanced handling of compound objects
and the implementation of a model that constrains one object to another highlight our commitment
to modelling real world manipulation tasks and their respective challenges. We have also provided
models for imagistic reasoning tasks that are capable of representing computer vision pipelines with
additional components for visual verification based on our semDT technology.

In conclusion, the enhancements achieved provide a strong basis for our ongoing endeavours in the
TraceBot project. By handling more robot configurations, manipulation types, object features and
providing suitable representation and reasoning techniques, we are looking forward to the upcoming
developments and challenges we are focussing on in the next period of the TraceBot project.

m Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

D5.3 Software models (final)
6 References

[1] Michele Colledanchise and Petter Ogren. Behavior trees in robotics and AI: An introduction. CRC
Press, 2018.

[2] Franklin K. Kenghagho, Michael Neumann, Patrick Mania, and Michael Beetz. Perception through
cognitive emulation: “a second iteration of naivphys4rp for learningless and safe recognition and 6d-
pose estimation of (transparent) objects”. In 2024 IEEE International Conference on Robotics and
Automation (ICRA) (Submitted).

[3] Franklin K. Kenghagho, Michael Neumann, Patrick Mania, Toni Tan, Feroz A. Siddiky, René
Weller, Gabriel Zachmann, and Michael Beetz. Naivphys4rp - towards human-like robot perception
“physical reasoning based on embodied probabilistic simulation”. In 2022 IEEE-RAS 2ist
International Conference on Humanoid Robots (Humanoids), pages 815—822, 2022.

[4] Patrick Mania, Simon Stelter, Gayane Kazhoyan, and Michael Beetz. An Open and Flexible Robot
Perception Framework for Mobile Manipulation Tasks. In 2024 IEEE International Conference on
Robotics and Automation (ICRA) (Submitted).

m Horizon 2020

TraceBot receives funding from the European Union's H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP programme (grant agreement No 101017089)

