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Abstract 

This report presents our developments in the context of the 

TraceBot project about AvagentIEASim, a Physics-Enabled Virtual 

Simulator (PVS) designed to analyze human-like action execution 

within a physically realistic environment. By incorporating 

essential physics constraints, such as gravity, friction, collision 

dynamics, and force interactions, AvagentIEASim enables robotic 

systems to acquire task-specific physical knowledge, ensuring 

accurate and reliable motion execution. However, a key challenge 

lies in automatically generating structured, action-specific motion 

instructions that seamlessly drive simulations for further 

experimentation. While human demonstrations serve as a valuable 

knowledge source, translating them into machine-readable, 

physics-aware action sequences remains complex due to the 

limitations of 2D video data in capturing precise object 

interactions, grasp mechanics, and sequential task flow. To 

address this, we propose a multimodal semantic representation 

framework that extracts structured action descriptions from 

human demonstrations, dynamically generating motion 
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instructions that adhere to real-world physical constraints. By 

automating this translation process, AvagentIEASim enhances 

simulation-based learning and provides a robust foundation for 

physics-driven robotic task execution, enabling intelligent agents 

to develop and refine human-like manipulation strategies in a 

controlled virtual environment. 
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Executive Summary 
 

Laboratory automation ensures efficiency and accuracy, yet human execution varies due to differences 

in grasping techniques, applied forces, and object handling methods. These inconsistencies pose 

challenges for robotic systems, which require precise and repeatable instructions to replicate human 

actions accurately. While instructional videos provide useful references, traditional 2D video data 

lacks depth and motion details, making it difficult to extract grasp mechanics, force application, and 

motion constraints. As a result, converting human demonstrations into machine-readable action 

sequences remains a significant challenge in robotic automation. 

To address this, we develop AvagentIEASim, a Physics-Enabled Virtual Simulator (PVS) that provides 

a realistic, physics-driven environment for training autonomous agents, including robots and virtual 

MetaHumans. By integrating physical constraints such as gravity, friction, and collision dynamics, 

AvagentIEASim enables AI-driven systems to acquire task-specific physical knowledge, ensuring 

accurate and reliable motion execution. The system further enhances action sequence structuring 

through a multimodal semantic representation framework, which extracts structured action 

descriptions from human demonstrations and refines them into machine-executable instructions. To 

improve temporal coherence and grasping accuracy, we developed a Refinement model that combines 

Monte Carlo Tree Search (MCTS) with an LLM, ensuring logically structured and physics-aware 

action sequences that maintain consistency across different manipulation tasks. 

As part of the TraceBot project, this work focuses on parsing and abstracting laboratory automation 

actions from virtual demonstrations, allowing AI-driven systems to better understand and execute 

human-like manipulation tasks. While laboratory workflows are standardized at a procedural level, 

variations in grasping strategies, force application, and task execution speeds make it difficult for 

robotic systems to generalize across different demonstrations. These inconsistencies create challenges 

in ensuring repeatability, accuracy, and adaptability, making human-to-machine translation of 

actions a crucial aspect of laboratory automation. 

AvagentIEASim addresses these challenges by generating structured semantic instructions, capturing 

detailed manipulation parameters that define user-object interactions. This structured approach 

enables AI systems to analyze, interpret, and execute tasks with greater precision and contextual 

awareness, reducing ambiguity in robotic task execution. The simulator provides a physics-aware 

environment, ensuring that object manipulation is both semantically accurate and physically feasible 

under real-world constraints. To further enhance robotic adaptability, AvagentIEASim includes an 

adaptive object grasping mechanism, which adjusts grip stability based on surface friction, object 
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shape, and material properties. Additionally, the bidirectional FK-IK solver enables real-time motion 

refinement, allowing both robotic and virtual agents to dynamically adjust their movements based on 

task requirements and environmental conditions. 

By automating the generation of structured motion instructions, AvagentIEASim enhances functional 

verification and task planning, supporting simulation-driven learning, where AI agents refine their 

understanding of manipulation tasks while ensuring compliance with physical constraints. This 

approach improves robotic adaptability and execution accuracy, making it easier to integrate learned 

behaviours into AI-driven planning and reasoning frameworks. Ultimately, AvagentIEASim provides 

a scalable and flexible solution for advancing intelligent automation, enabling robots to learn, adapt, 

and perform complex tasks with greater efficiency and precision in laboratory environments. 

2 Introduction 
 

This research, developed as part of the TraceBot project, focuses on advancing laboratory automation 

by addressing challenges in translating human demonstrations into structured, machine-executable 

instructions. To achieve this, we introduce two key developments: (1) the development of 

AvagentIEASim, a Physics-Enabled Virtual Simulator (PVS) designed to simulate human-like action 

execution within a physics-aware environment, and (2) a multimodal semantic representation 

framework that extracts and refines structured action instructions from human demonstrations. 

AvagentIEASim integrates real-world physics constraints such as gravity, friction, and collision 

dynamics to enhance robotic task execution, ensuring that AI-driven agents can accurately learn and 

perform manipulation tasks. The proposed framework leverages a Refinement Model which combines 

Monte Carlo Tree Search (MCTS) with an LLM to improve the coherence and logical consistency of 

action sequences, enabling the generation of structured, machine-executable task-instructions 

optimized for robotic learning and task planning. The following sections first detail the core features 

of AvagentIEASim, followed by the semantic refinement process for enhancing robotic task execution 

and functional verification. 
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3 Physics-Enabled Virtual Simulator - AvagentIEASim 
 

AvagentIEASim is designed to advance robotic manipulation and virtual human (MetaHuman) [3] 

interactions by integrating real-world physics into a controlled simulation environment (see Figure 

1). It incorporates virtual robots such as PR2 [1] and Unitree G1 [2], providing a high-fidelity platform 

where both robots and MetaHumans can learn, adapt, and interact under physical constraints, 

including force dynamics, friction properties, and object interactions. By leveraging machine learning 

techniques, such as 3D human mesh generation (see Figure 2) for motion analysis [4], 

AvagentIEASim translates human demonstrations into structured action sequences, enabling robots 

to dynamically acquire and refine task-specific skills through reinforcement learning [5]. 

A key objective of AvagentIEASim is to enhance robotic task planning and execution by offering 

realistic, physics-based simulations that minimize errors and improve operational efficiency in real-

world applications. Through progressive learning mechanisms [6], the simulator enables AI-driven 

systems to continuously optimize motion strategies for adaptive task execution across diverse 

environments. Additionally, AvagentIEASim plays a crucial role in bridging the gap between 

simulated training and real-world robotic deployment by allowing systems to validate and refine 

motion planning strategies before real-world implementation. The integration of physics-aware 

control models ensures that robots not only simulate actions accurately but also incorporate real-

world constraints such as object mass, material properties, and environmental forces. As a result, 

AvagentIEASim serves as a versatile research platform that facilitates the development of intelligent, 

physics-aware robotic systems, enabling more effective interaction, skill acquisition, and real-world 

task execution. 

  

    

Figure 1:  The left two images show the hand and canister-tray collision along with the physics 

material setup, while the right two images illustrate the collision detection with the canister, 

where each finger independently detects and responds to collisions. 
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3.1 FK-IK Bidirectional Solver 
 

AvagentIEASim incorporates a real-time kinematic controller that seamlessly integrates Forward 

Kinematics (FK) and Inverse Kinematics (IK) within the Control Rig, enabling precise motion control 

for both robots and MetaHumans [7]. Its bidirectional FK-IK solver dynamically switches between 

automated learning from human demonstrations and real-time user interactions (see Figure 2). In FK 

mode, motion is driven by real-time or pre-recorded 3D motion tracking, effectively replicating 

human actions within a physics-aware environment. In IK mode, users can manipulate movements 

using a joystick interface or a hand-pointed trajectory planner, refining task-specific motions such as 

grasping and adjusting hand posture. To ensure natural synchronization of body and finger 

movements, we developed a joint orientation-based mapping system that converts 3D joint 

orientations from SMPLX-based (Skinned Multi-Person Linear model eXpressive) [14] models [4] 

into precise MetaHuman motions in FK mode. Additionally, we designed an instruction-to-control 

generation function that processes MCTS-LLM generated instructions to drive the simulations. This 

process operates in three key (see Figure 2) steps: (1) Task Sequence Generation, synchronizing task 

and sub-task sequences to execute an action; (2) Motion Generation in IK Mode, producing movement 

for each step based on task constraints; and (3) Grasp Generation, regulating force dynamics and fine-

tuned finger motions for precise object interactions. By integrating these components, 

AvagentIEASim significantly enhances the simulation of complex grasping behaviors, closely 

mirroring human hand interactions and improving motion planning in AI-driven agents. This high-

 

Figure 2: The input-output flow of AvagentIEASim 
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fidelity kinematic control system provides a robust and adaptable framework for developing 

intelligent, physics-aware robotic systems capable of executing intricate manipulation tasks with 

precision in a physics-enabled simulation environment. 

3.2 Adaptive Object Grasping 
 

To ensure physically accurate and dynamic grasping, physics materials have been applied to both 

MetaHumans and interactive objects within the PVS environment (Figure 1). These materials, fine-

tuned using Unreal Engine's physics framework [7], require meticulous parameter optimization based 

on environmental conditions, object category, and the object's inherent physical properties and 

dynamics. Through extensive experimentation, we systematically configured key parameters, friction, 

restitution, mass, and damping to enable adaptive object manipulation, where forces and resistances 

closely mirror real-world physics. Friction coefficients regulate the sliding resistance between fingers 

and objects, ensuring a firm but natural grip, while collision presets define object responses upon 

contact. Additionally, mass properties influence the force needed for lifting and holding, and gravity 

settings dictate object behavior upon release. These tuneable parameters enhance the learning 

process, refining adaptive grasping strategies and improving robotic interaction within the simulated 

environment. By incorporating realistic force interactions, precise finger joint configurations, and soft 

tissue reflection mechanics, AvagentIEASim ensures that virtual grasping behaviors closely resemble 

human-object interactions, ultimately improving robotic learning efficiency and enhancing real-

world applicability. 

To gain deeper insights into action-specific tasks within this physics-enabled environment, an 

automated, instruction-driven approach is essential for efficient knowledge acquisition, reducing 

reliance on manual control. By automating the extraction of structured semantic instructions, the 

system can generate machine-readable action sequences, improving task execution and decision-

making. The next section explores how activity video data can be transformed into semantic 

descriptions, enabling robotic systems to interpret and execute tasks with greater precision and 

contextual awareness. 

4 Activity Video to Semantic Description 
 

Learning from video demonstrations of skilful daily tasks is a valuable knowledge source; however, 

converting this information into a structured, machine-readable format presents significant 

challenges. A major limitation arises from the low-dimensional nature of 2D data, which restricts the 

accurate decoding of object contact timing, action sequence flow, and grasp execution mechanics. 
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Additionally, 2D representations lack higher-level contextual information, making it difficult to 

capture the complexities of human-object interactions, particularly in understanding temporal 

activities, grasp types, orientations, and object-activity relationships: all of which are crucial for 

semantic understanding. Overcoming these limitations requires extended dimensional 

representations and the extraction of semantic meaning in a structured, sequential manner, enabling 

machine learning systems to interpret and reason about complex human actions more effectively. 

Recent progress on Vision-Language Models (VLMs) [8], [9], [10] have significantly advanced video 

understanding, human activity recognition, and robotics by generating textual descriptions from 

visual data. However, they struggle with temporal coherence, motion continuity, and structured 

action representation, particularly in sequential video analysis. When processing a sequence of 𝑁 

frames, a temporal action state definition is required to maintain a coherent action flow. A key 

limitation of VLMs is frame-wise text generation, where each frame is processed independently, 

disregarding its relationship to preceding or succeeding frames. This results in fragmented and 

inconsistent narratives, making it difficult to reconstruct step-by-step event sequences. Furthermore, 

VLMs tend to produce generic and repetitive descriptions, often failing to recognize causal 

dependencies, such as the necessity of picking before holding an object. This deficiency in structured 

temporal reasoning limits their effectiveness in high-precision applications, such as robotic task 

planning based on video-based activity analysis. Thus, an enhanced methodology is required to align 

VLM-generated descriptions with logical action sequences, ensuring temporal consistency and 

contextual accuracy while reducing inconsistencies. 

To overcome these limitations, we propose a context refined model that integrates Monte Carlo Tree 

Search (MCTS) [11] [12] with an LLM(Phi-3.5-mini-instruct) [10] to enhance the refinement of action 

sequences generated by VLM (Phi-3.5-Vision-Instruct) [10]. MCTS is a heuristic search algorithm that 

systematically explores and evaluates possible decision paths to identify the optimal solution. For our 

approach, we define the four key steps as follows: 

Selection: The best node is chosen based on prior evaluations, ensuring logical continuity and 

coherence in the refinement process. 

Expansion: New child nodes with alternative text refinements are generated, incorporating grasp 

detection, hand-object distance, and prior segment dependencies to maintain contextual consistency. 

Simulation: Multiple refinement pathways are explored using LLM-generated candidate 

descriptions, with scoring functions evaluating coherence, interaction constraints, and semantic 

accuracy. 
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Backpropagation: Accumulated rewards update node values, refining the search to retain the most 

plausible, logically structured, and semantically accurate action sequences. 

Our approach begins by dividing 𝑁 frames into I segments (I<N) where each segment represents the 

temporal action. In the first stage, each segment is processed by the VLM, generating segment-wise 

descriptions 𝑇𝑖. To ensure coherence, we introduce the MCTS-LLM Refinement Model (see Figure 3). 

Before detailing the refinement process, we introduce three key components to enhance the refining 

accuracy. First, we use a 3D Hand Mesh Model 𝐹ℎ(𝑋𝑖) to generate a structured hand representation. 

The model 𝐹ℎ(𝑋𝑖) helps to understand the grasp type and hand-object distance from its extracted 

features. Second, we define a linear feedforward regressor network for 𝑑𝑖 =  𝐹ℎ𝑜(𝑋𝑖), which calculates 

the distance (see Table 2) between the hand and the object. The model 𝐹ℎ𝑜(𝑋𝑖) processes features from 

the l-th layer of 𝐹ℎ(𝑋𝑖)  and the targeted object, which is localized using VLM-generated text 

descriptions. Lastly, we employ a grasp classifier 𝑔𝑖 =  𝐹𝑔𝑝(𝐹𝑐𝑜
𝑙 ), that determines the grasp type (see 

Table 2) by analysing the features from specific l-th layer of the hand model  𝐹ℎ . The refined text 𝑅𝑖 

represents the updated action description for 𝑆𝑖  after applying MCTS optimization. To ensure the 

refinement improvements, we use an optimization function 𝑀(𝑇𝑖, 𝑑𝑖 , 𝑔𝑖, 𝑅<𝑖 , Φ)  which integrates 

 

Figure 3. Proposed MCTS-LLM Refinement Model 
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MCTS with an LLM Φ, specifically Phi-3.5 [10]. This approach optimizes the sequences of action state 

by improving the correctness and coherence, following the equation: 

𝑃(𝑅) = ∏ 𝑃(𝑅𝑖 | 𝑀(𝑇𝑖, 𝑑𝑖, 𝑔𝑖 , 𝑅<𝑖, Φ))

𝐼

𝑖=1

               (1) 

Where the MCTS-LLM Refinement Model is defined as: 

𝑀(𝑇𝑖, 𝑑𝑖, 𝑔𝑖, 𝑅<𝑖, Φ) = 𝑎𝑟𝑔 𝑚𝑎𝑥 ∑ 𝑃(𝑅𝑖
𝑗
 | 𝑇𝑖, 𝑑𝑖, 𝑔𝑖, 𝑅<𝑖, Φ)

𝐽

𝑗=1

                (2) 

Where J is the number of MCTS iteration and 𝑅𝑖
𝑗
 is the Candidate refinement at iteration 𝑗. The MCTS-

LLM Refinement Model refines VLM-generated action sequences 𝑇𝑖 while ensuring logical coherence 

and semantic accuracy. Given a sequence of segments 𝑆𝑖, each associated with hand-object distance 

 𝑑𝑖, grasp type  𝑔𝑖, and text description  𝑇𝑖, the goal is to optimize the refined description  𝑅𝑖 by 

leveraging 𝑀(𝑇𝑖, 𝑑𝑖 , 𝑔𝑖, 𝑅<𝑖 , Φ), where MCTS iteratively explores the best refinement. The MCTS-based 

optimization 𝑆𝑖 is treated as a node in a search tree, where 

possible text refinements are evaluated based on temporal 

consistency, logical order, and interaction constraints. The 

tree expansion process generates alternative descriptions 

for each segment, informed by grasp detection, hand-object 

interaction distance, and prior segment dependencies. A 

reward function assigns scores to each refinement, 

considering logical coherence, causality, and consistency 

with detected hand-object interactions. During simulations, 

MCTS explores multiple refinement pathways by sampling 

candidate descriptions 𝑇𝑖  suggested by the LLM Φ . The 

backpropagation step then updates the scores, selecting the 

most probable refinements to ensure correctness. Incorrect 

or inconsistent descriptions such as misclassified grasp 

types, missing transitions (e.g., pick before hold), or 

redundant actions are pruned, ensuring that only the most 

plausible action sequences are retained (see red highlights in Table 2). By integrating grasp 

classification 𝑔𝑖  and hand-object proximity 𝑑𝑖 into the refinement process, the model effectively 

filters out false-positive VLM outputs, ensuring that the final structured text accurately represents 

human-object coherent interactions.  

Table 1, Generated Instruction 

Format 

{"component_id": "Canister_kit_01", 

 "component_information": { 

          "name": " canister_kit", 

          "id_number": "01", 

          "component_type": "lab_object", 

          "shape": "cylindrical", 

          "size": "medium", 

          "handle": "none", 

          "orientation": "upright", 

          "weight": 1 }, 

    "executed_action": { 

          "primary_action": "taking", 

          "secondary_action": "none" }, 

    "grasp_descriptor": { 

          "grasp_type": "Tri pod", 

          "contact_points": "three_fingers", 

          "holding_type": "one_handed", 

          "hand_orientation": "top_to_bottom" }, 

    "environmental_factors": { 

         "surface_conditions": "flat_surfaces" }} 
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From each segment, we systematically generate a semantic instruction, embedding detailed action-

specific knowledge that encompasses object properties, executed actions, grasp descriptors, and 

environmental constraints. To achieve this, we leverage an LLM, carefully prompting it with a 

structured template to ensure precise and contextually relevant instruction generation. This 

structured format, as illustrated in Table 1, enhances the interpretability and usability of action 

sequences, making them more effective for robotic task learning, physics-driven virtual simulations, 

and assistive AI applications in human activity recognition. 

To further evaluate the effectiveness of our approach, we present experimental outputs from our 

model, demonstrating how our proposed MCTS-LLM Refinement Model refines raw VLM-generated 

descriptions into structured, context-aware instructions. Screenshots of the analysed scenario can be 

seen at the top of Figure 3. As shown in Table 2, our refinement process significantly improves the 

coherence, accuracy, and logical sequence of action descriptions, ensuring that they align with real-

world physical constraints and task dependencies. This refinement leads to a more reliable and 

interpretable representation of action sequences, ultimately optimizing robotic motion planning and 

execution in both simulated and real-world environments.  

 

Table 2: Displays the output of the refined text generated by the MCTS-LLM Refinement Model 

 VLM Text Description Hand 
Object 

Distance 

Grasp 
Type 

Refined Text from MCTS-
LLM  

1 Segment 1: The person is standing in an office 
setting, preparing to perform a canister pick-
and-place task into a canister-tray.  

2.8 None T1 Initial State: The person is 
preparing to perform a canister pick-
and-place task. 

2  Segment 2: The person is standing in an office 
setting, preparing to interact with a canister 
placed on a table in front of them.  

1.13 None T2 Approach: The person is moving 
towards the canister placed on the 
table. 

3  Segment 3: The person is interacting with a 
canister placed on a table, possibly preparing 
for a pick-and-place task involving a 
canister-tray.  

0.76 Tripod T3 Approach: The person reaches 
towards the canister, adjusting hand 
position. 

4  Segment 4: The person is holding a canister 
near a canister-tray on a table.  

0.3 Tripod T4 Holding: The person firmly grasps 
the canister using a tripod grip. 

5  Segment 5: The person is holding a canister 
and appears to be preparing to place it into a 
canister-tray.  

0.27 
  

Tripod T5 Pick: The person lifts the canister, 
preparing for placement. 

6  Segment 6: The person is holding a canister 
and appears to be preparing to place it into a 
canister-tray.  

0.45 Spherical 
(Misclass

ified) 

T6 Transition: The person moves the 
canister towards the canister-tray 
with a tripod grasp. 

7  Segment 7: The person is holding a canister 
and placing it into a canister-tray.  

0.25 Tripod T7 Aligning: The person aligns the 
canister above the canister-tray, 
preparing for release 

8  Segment 8: The person is holding a canister 
and appears to be preparing to place it into a 

0.33 Spherical 
(Misclass

ified) 

T8 Aligning: The person adjusts the 
canister over the canister-tray, 
ensuring correct alignment. 
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5 Conclusion 
 

In this work, we presented the development of AvagentIEASim, a Physics-Enabled Virtual Simulator 

designed to bridge the gap between human demonstrations and robotic task execution by integrating 

structured semantic action representations with real-world physics constraints within the TraceBot 

use case. Our approach transforms instructional video data into machine-readable instructions, 

enabling AI-driven agents to interpret and execute human-like actions with greater accuracy. This 

functionality also enables future research on automatic plan generation and grounding onto different 

robot platforms. 

To refine the VLM-generated action sequences, we implemented an MCTS-LLM Refinement Model, 

ensuring logical coherence, grasp classification accuracy, and hand-object interaction fidelity. This 

improves temporal consistency and task-specific reasoning, making the sequences more effective for 

robotic learning and simulation. AvagentIEASim integrates a semantic instruction pipeline that 

extracts task-relevant motion details and translates them into executable actions using the Task 

Sequence Generator, Motion Generator, and Grasp Generator. These modules ensure adherence to 

physical constraints like force dynamics, object properties, and environmental interactions. By 

leveraging these capabilities, AvagentIEASim provides a robust framework for refining AI-driven 

robotic behaviors, and enhancing motion planning, task execution, and real-world deployment. 

 

  

canister-tray. (Incorrect sequence, already 
placed in step 7) 

9  Segment 9: The person is holding a canister 
and appears to be preparing to place it into a 
canister-tray. (Incorrect sequence, already 
placed in step 7) 

0.29 Tripod T9 Place Aligning: The person 
stabilizes the canister, ensuring 
secure positioning before release. 

10 Segment 7: The person is holding a canister 
and placing it into a canister-tray. 

0.7 Tripod T10 Placing: The person gently places 
the canister into the canister-tray. 

11  Segment 11: The person is holding a canister 
and placing it into a canister-tray. 

1.1 None T11 Completion: The person releases 
the canister inside the canister-tray, 
completing the task. 
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